Skip to main content
Canna~Fangled Abstracts

Overexpression of CsMIXTA, a Transcription Factor from Cannabis sativa, Increases Glandular Trichome Density in Tobacco Leaves

By June 6, 2022June 10th, 2022No Comments


doi: 10.3390/plants11111519.

Affiliations 

Abstract

Cannabinoids are synthesized in glandular stalked trichomes on the female flowers of Cannabis sativa (cannabis). The regulation of glandular trichome development has not been characterized in cannabis. We recently identified an R2R3-MYB transcription factor, CsMIXTA, which could be involved in trichome morphogenesis in cannabis. Some homologous genes of CsMIXTA are known to function in glandular trichome initiation in other plant species. CsMIXTA is highly expressed in flower tissue compared to vegetative tissues. Interestingly, CsMIXTA is also highly expressed in trichomes isolated from female flower tissue. In addition, CsMIXTA is upregulated during the peak stages of female flower maturation in correlation with some cannabinoid biosynthetic genes. Transient expression in Nicotiana benthamiana showed that CsMIXTA is localized in the nucleus. Furthermore, yeast transcriptional activation assay demonstrated that CsMIXTA has transactivation activity. Overexpression of CsMIXTA in Nicotiana tabacum resulted in higher trichome density, larger trichome size, and more branching on stalked glandular trichomes. The results indicate that CsMIXTA not only promotes glandular trichome initiation in epidermal cells, but also regulates trichome development in tobacco leaves. In this report, we characterized the novel function of the first cannabis transcription factor that may be critical for glandular trichome morphogenesis.

Keywords: Cannabis sativa, cannabinoid biosynthesis, female flower development, glandular trichome morphogenesis, transcription factor

Leave a Reply