doi: 10.1002/bab.2119.
- PMID: 33604949
- DOI: 10.1002/bab.2119
Abstract
Endoplasmic reticulum (ER) stress is an imbalance between the ER’s protein-folding load and capacity. It can be induced by various physiological conditions, activating the unfolded protein response to re-establish homeostasis, promoting cell survival. Under severe or chronic stress, apoptosis is induced. Normal cells generally do not experience continuous ER stress induction. The stressful conditions experienced in the tumour microenvironment facilitates chronic ER stress and UPR activation, which plays a pivotal role in tumour survival. Exacerbation of pre-existing ER stress can trigger cancer cell death, with a minimal effect on normal cells. Current literature suggests that cannabinoid treatment may induce cancer cell death via ER stress; however, little is known about the mechanisms of induction. This study proposed that cannabidiol (CBD) mechanism that occurred through the influx of Ca2+ via the TRPV1 receptor, and increasing ROS production affects protein folding and induces ER stress. ER stress was induced, and detection and quantification were completed using Thioflavin T staining and GRP78 by western blot analysis. The effect of cannabinoid treatment on ROS production and Ca2+ influx was measured. CBD was the most potent ER stress inducer, significantly increasing Ca2+ and ROS accumulation. Concomitant treatment with CBD and an antioxidant significantly increased cell viability and decreased ER stress induction in the MCF7 cell line. Concomitant treatment with a TRPV1 antagonist increased viability in this cell line. In conclusion, the data suggested that CBD induced ER stress via Ca2+ influx through the TRPV1 receptor, thereby elevating intracellular ROS levels and disrupting protein folding.
This article is protected by copyright. All rights reserved.
Keywords: CBD, ER stress, ROS, UPR, cannabinoids
This article is protected by copyright. All rights reserved.