Author information
Abstract
Modulation of cannabinoid and neuropeptide Y (NPY) receptors may offer therapeutic benefits for post-traumatic stress disorder (PTSD). In this study, we aimed to investigate the functional interaction between these systems in the basolateral amygdala (BLA) in a rat model of PTSD. Rats were exposed to the shock and reminders model of PTSD and tested for hyper arousal/PTSD- and depression-like behaviors 3 weeks later. Immediately after shock exposure rats were microinjected into the BLA with URB597, a selective inhibitor of fatty acid amide hydrolase (FAAH) that increases the levels of the endocannabinoid anandamide or with the NPY1 receptor agonist Leu31,Pro34-NPY (Leu). Intra-BLA URB597 prevented the shock/reminders-induced PTSD- behaviors (extinction, startle) and depression-behaviors (despair, social impairments). These preventing effects of URB597 on PTSD- and depression-like behaviors were shown to be mostly mediated by cannabinoid CB1 and NPY1 receptors, as they were blocked when URB597 was co-administered with a low dose of a CB1 or NPY1 receptor antagonist. Similarly, intra-BLA Leu prevented development of all the behaviors. Interestingly, a CB1 antagonist prevented the effects of Leu on despair and social behavior, but not the effects on extinction and startle. Moreover, exposure to shock and reminders upregulated CB1 and NPY1 receptors in the BLA and infralimbic prefrontal cortex and this upregulation was restored to normal with intra-BLA URB597 or Leu. The findings suggest that the functional interaction between the eCB and NPY1 systems is complex and provide a rationale for exploring novel therapeutic strategies that target the cannabinoid and NPY systems for stress-related diseases.
Copyright © 2019. Published by Elsevier Ltd.