Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease.
Abstract
- PMID:
24390226
[PubMed – as supplied by publisher]
At a glance
Figures index
FromPresynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease
- Wei Xiong,
- Shao-Rui Chen,
- Liming He,
- Kejun Cheng,
- Yi-Lin Zhao,
- Hong Chen,
- De-Pei Li,
- Gregg E Homanics,
- John Peever,
- Kenner C Rice,
- Ling-gang Wu,
- Hui-Lin Pan
- & Li Zhang
- Nature Neuroscience
17,
232–239
doi:10.1038/nn.3615
Figures
Figure 1
The α1R271Q mutation impairs GlyR function and causes exaggerated startle behavior in mice.
Figure 2
DH-CBD rescues α1 R271Q mutation–induced GlyR deficiency and hyper-reflexia in mice.
Figure 3
Site-specific restoration of hyperekplexic GlyR dysfunction and startle responses by DH-CBD.
Figure 4
Differential sensitivity of homomeric and heteromeric GlyRs to hyperekplexic mutations and DH-CBD.
Figure 5
Rescue by DH-CBD of diminished glycine release in spinal slices from α1 R271Q mutant mice.
Figure 6
Differential sensitivity of presynaptic and postsynaptic GlyRs to hyperekplexic mutation and rescue by DH-CBD.
Supplementary Figures
Supplementary Figure 1
The R271Q heterozygous mutant mice exhibit a rotarod performance similar to their wild type (WT) littermates.
Supplementary Figure 2
The efficacy of DH-CBD potentiation of R271Q mutant GlyRs.
Supplementary Figure 3
DH-CBD does not significantly alter strychnine inhibition of GlyRs.
Supplementary Figure 4
Addition of the β subunit does not alter protein expression of R271Q and WT receptors at the cell surfaces
Supplementary Figure 5
DH-CBD does not restore diminished glycinergic transmission in spinal slices from the α1Q266I mutant mice.
Supplementary Figure 6
The effect of PTX on the Gly sIPSC amplitdue in spinal slices obtained from the α1R271Q mutant mice.
Supplementary Figure 7
DH-CBD restores seizure-like behavior in homozygous M287L mice.
Supplementary Figure 8
Cannabinoid sensitive presynaptic GlyRs as a primary therapeutic target in the treatment of familial startle disease.
References
- Davidoff, R.A., Shank, R.P., Graham, L.T. Jr., Aprison, M.H. & Werman, R. Association of glycine with spinal interneurones. Nature 214, 680–681 (1967).
- Betz, H. & Laube, B. Glycine receptors: recent insights into their structural organization and functional diversity. J. Neurochem. 97, 1600–1610 (2006).
- Grudzinska, J. et al. The β subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45, 727–739 (2005).
- Weltzien, F., Puller, C., O’Sullivan, G.A., Paarmann, I. & Betz, H. Distribution of the glycine receptor β-subunit in the mouse CNS as revealed by a novel monoclonal antibody. J. Comp. Neurol. 520, 3962–3981 (2012).
- Lynch, J.W. & Callister, R.J. Glycine receptors: a new therapeutic target in pain pathways.Curr. Opin. Investig. Drugs 7, 48–53 (2006).
- Turecek, R. & Trussell, L.O. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411, 587–590 (2001).
- Jeong, H.-J., Jang, I.-S., Moorhouse, A.J. & Akaike, N. Activation of presynaptic glycine receptors facilitates glycine release from presynaptic terminals synapsing onto rat spinal sacral dorsal commissural nucleus neurons. J. Physiol. (Lond.) 550, 373–383 (2003).
- Ye, J.-H. et al. Presynaptic glycine receptors on GABAergic terminals facilitate discharge of dopaminergic neurons in ventral tegmental area. J. Neurosci. 24, 8961–8974 (2004).
- Hruskova, B. et al. Differential distribution of glycine receptor subtypes at the rat calyx of held synapse. J. Neurosci. 32, 17012–17024 (2012).
- Shiang, R. et al. Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat. Genet. 5, 351–358 (1993).
- Harvey, R.J., Topf, M., Harvey, K. & Rees, M.I. The genetics of hyperekplexia: more than startle!. Trends Genet. 24, 439–447 (2008).
- Bakker, M.J., van Dijk, J.G., van den Maagdenberg, A.M. & Tijssen, M.A. Startle syndromes.Lancet Neurol. 5, 513–524 (2006).
- Davies, J.S. et al. The glycinergic system in human startle disease: a genetic screening approach. Front. Mol. Neurosci. 3, 8 (2010).
- Becker, L. et al. Disease-specific human glycine receptor α1 subunit causes hyperekplexia phenotype and impaired glycine- and GABA(A)-receptor transmission in transgenic mice.J. Neurosci. 22, 2505–2512 (2002).
- Findlay, G.S. et al. Glycine receptor knock-in mice and hyperekplexia-like phenotypes: comparisons with the null mutant. J. Neurosci. 23, 8051–8059 (2003).
- Blednov, Y.A., Benavidez, J.M., Homanics, G.E. & Harris, R.A. Behavioral characterization of knockin mice with mutations M287L and Q266I in the glycine receptor α1 subunit. J. Pharmacol. Exp. Ther. 340, 317–329 (2012).
- Zhang, L. & Xiong, W. Nonpsychoactive cannabinoid action on 5-HT3 and glycine receptors. in Endocannabinoids: Actions at Non-CB1/CB2 Cannabinoid Receptors (eds. Abood, M.E., Sorensen, R.G. & Stella, N.) 199–218 (Springer, 2013).
- Xiong, W. et al. Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. J. Exp. Med. 209, 1121–1134 (2012).
- Xiong, W. et al. Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat. Chem. Biol. 7, 296–303 (2011).
- Kehne, J.H., Gallager, D.W. & Davis, M. Strychnine: brainstem and spinal mediation of excitatory effects on acoustic startle. Eur. J. Pharmacol. 76, 177–186 (1981).
- Pribilla, I., Takagi, T., Langosch, D., Bormann, J. & Betz, H. The atypical M2 segment of the β subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. EMBO J.11, 4305–4311 (1992).
- Yang, Z., Cromer, B.A., Harvey, R.J., Parker, M.W. & Lynch, J.W. A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore. J. Neurochem. 103,580–589 (2007).
- Deleuze, C. et al. Structural difference between heteromeric somatic and homomeric axonal glycine receptors in the hypothalamo-neurohypophysial system. Neuroscience135, 475–483 (2005).
- Schneggenburger, R. & Forsythe, I.D. The calyx of Held. Cell Tissue Res. 326, 311–337(2006).
- Turecek, R. & Trussell, L.O. Reciprocal developmental regulation of presynaptic ionotropic receptors. Proc. Natl. Acad. Sci. USA 99, 13884–13889 (2002).
- O’Shea, S.M., Becker, L., Weiher, H., Betz, H. & Laube, B. Propofol restores the function of “hyperekplexic” mutant glycine receptors in Xenopus oocytes and mice. J. Neurosci. 24,2322–2327 (2004).
- Shan, Q., Han, L. & Lynch, J.W. Function of hyperekplexia-causing α1R271Q/L glycine receptors is restored by shifting the affected residue out of the allosteric signalling pathway. Br. J. Pharmacol. 165, 2113–2123 (2012).
- Lape, R., Plested, A.J., Moroni, M., Colquhoun, D. & Sivilotti, L.G. The α1K276E startle disease mutation reveals multiple intermediate states in the gating of glycine receptors. J. Neurosci. 32, 1336–1352 (2012).
- Harvey, R.J. et al. GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884–887 (2004).
- Zhou, H.Y. et al. N-methyl-D-aspartate receptor- and calpain-mediated proteolytic cleavage of K+-Cl− cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain. J. Biol. Chem. 287, 33853–33864 (2012).
- Andermann, F., Keene, D.L., Andermann, E. & Quesney, L.F. Startle disease or hyperekplexia: further delineation of the syndrome. Brain 103, 985–997 (1980).
- Zhou, L., Chillag, K.L. & Nigro, M.A. Hyperekplexia: a treatable neurogenetic disease.Brain Dev. 24, 669–674 (2002).
- Praveen, V., Patole, S.K. & Whitehall, J.S. Hyperekplexia in neonates. Postgrad. Med. J.77, 570–572 (2001).
- Rees, M.I. et al. Hyperekplexia associated with compound heterozygote mutations in the β-subunit of the human inhibitory glycine receptor (GLRB). Hum. Mol. Genet. 11, 853–860(2002).
- Chung, S.K. et al. GLRB is the third major gene of effect in hyperekplexia. Hum. Mol. Genet. 22, 927–940 (2013); erratum 22, 2552 (2013).
- Rees, M.I. et al. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat. Genet. 38, 801–806 (2006).
- Izzo, A.A., Borrelli, F., Capasso, R., Di Marzo, V. & Mechoulam, R. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci.30, 515–527 (2009).
- Ashton, H. Guidelines for the rational use of benzodiazepines. When and what to use.Drugs 48, 25–40 (1994).
- Tijssen, M.A. et al. The effects of clonazepam and vigabatrin in hyperekplexia. J. Neurol. Sci. 149, 63–67 (1997).
- Borghese, C.M. et al. Characterization of two mutations, M287L and Q266I, in the α1 glycine receptor subunit that modify sensitivity to alcohols. J. Pharmacol. Exp. Ther. 340,304–316 (2012).
- Kung, A.Y., Rick, C., O’Shea, S., Harrison, N.L. & McGehee, D.S. Expression of glycine receptors in rat sensory neurons vs. HEK293 cells yields different functional properties.Neurosci. Lett. 309, 202–206 (2001).
- Sebe, J.Y., Eggers, E.D. & Berger, A.J. Differential effects of ethanol on GABAA and glycine receptor–mediated synaptic currents in brain stem motoneurons. J. Neurophysiol. 90,870–875 (2003).
- Chau, P., Hoifodt-Lido, H., Lof, E., Soderpalm, B. & Ericson, M. Glycine receptors in the nucleus accumbens involved in the ethanol intake-reducing effect of acamprosate.Alcohol. Clin. Exp. Res. 34, 39–45 (2010).
- Li, J. et al. Microinjection of glycine into the ventral tegmental area selectively decreases ethanol consumption. J. Pharmacol. Exp. Ther. 341, 196–204 (2012).
- Findlay, G.S. et al. Transgenic expression of a mutant glycine receptor decreases alcohol sensitivity of mice. J. Pharmacol. Exp. Ther. 300, 526–534 (2002).
- Hu, X.-Q., Sun, H., Peoples, R.W., Hong, R. & Zhang, L. An interaction involving an arginine residue in the cytoplasmic domain of the 5-HT3A receptor contributes to receptor desensitization mechanism. J. Biol. Chem. 281, 21781–21788 (2006).
- Pan, Y.Z. & Pan, H.L. Primary afferent stimulation differentially potentiates excitatory and inhibitory inputs to spinal lamina II outer and inner neurons. J. Neurophysiol. 91,2413–2421 (2004).
- Zhou, H.Y., Zhang, H.M., Chen, S.R. & Pan, H.L. Increased C-fiber nociceptive input potentiates inhibitory glycinergic transmission in the spinal dorsal horn. J. Pharmacol. Exp. Ther. 324, 1000–1010 (2008).
- Helmchen, F., Borst, J.G. & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72, 1458–1471 (1997).
- Xiong, W., Wu, X., Lovinger, D.M. & Zhang, L. A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. J. Neurosci. 32,5200–5208 (2012); erratum 32, 12979 (2012).