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ABSTRACT
A growing interest in Cannabis sativa uses for food, fiber, and medicine, and recent changes in
regulations have spurred numerous genomic studies of this once-prohibited plant. Cannabis
research uses Next Generation Sequencing technologies for genomics and transcriptomics. While
other crops have genome portals enabling access and analysis of numerous genotyping data
from diverse accessions, leading to the discovery of alleles for important traits, this is absent for
cannabis. The CannSeek web portal aims to address this gap. Single nucleotide polymorphism
datasets were generated by identifying genome variants from public resequencing data and
genome assemblies. Results and accompanying trait data are hosted in the CannSeek web
application, built using the Rice SNP-Seek infrastructure with improvements to allow multiple
reference genomes and provide a web-service Application Programming Interface. The tools built
into the portal allow phylogenetic analyses, varietal grouping and identifications, and favorable
haplotype discovery for cannabis accessions using public sequencing data.
Availability and implementation: The CannSeek portal is available at https://icgrc.info/
cannseek, https://icgrc.info/genotype_viewer.

Subjects Software and Workflows, Bioinformatics, Agriculture

STATEMENT OF NEED
Background on Cannabis sativa
Cannabis sativa (cannabis, NCBI:txid3483) is an ancient, versatile and highly plastic crop
that has been used for food, fiber and medicine for millennia. The first evidence of
cultivation for use as fiber for ropes, textiles, and paper is from China, dating back to
4000 B.C. The use as medicine (for rheumatic pain, constipation, female reproductive
disorders and malaria) by the ancient Chinese was reported in the Pen-ts’ao Ching, the first
pharmacopeia from 2700 B.C. It was also used as an anesthetic during surgery in
110–207 AD [1, 2]. Early nomads from Central Asia helped spread cannabis to Europe
around 4000 years ago, and Arab traders introduced it to Africa around 2000 years ago [3].
While it was spread globally and used extensively throughout the 18th and 19th centuries,
playing a crucial role in the colonial expansion of European nations, the use of C. sativa
became largely prohibited worldwide throughout the second half of the 20th century,
classified as a narcotic drug, and enforced through the United Nations Single Convention
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Treaty on Narcotic Drugs [4]. Over the last decade, however, there has been a global
resurgence in cannabis use, spearheaded by the same nation that enforced its widespread
prohibition.

There are clear legislation and market-driven distinctions between
low-tetrahydrocannabinol (THC), industrial hemp (for food and fibers), and high-THC
medicinal cannabis (for medicinal and recreational purposes). Industrial hemp is now a
global multibillion-dollar industry with a diverse product range competing with oil, protein,
biomass and fiber crops in diverse markets [5]. Equally, medicinal cannabis has quickly
grown into a multibillion-dollar industry with a multitude of medicinal applications and a
relaxation of regulation on its recreational use. However, due to its widespread prohibition
in the 20th and early 21st century, C. sativa has missed out on many technological advances
that have greatly benefited the improvement of traditional crops [6, 7].

Survey of Cannabis genomics datasets
The changes in regulation around C. sativa, combined with public interest and
developments in instrumentation and informatics, have spurred unprecedented expansion
of C. sativa genomic research and development over the last decade [8]. Cannabis genome
assemblies have been made available with chromosome level builds, including Purple Kush
(PK) (the first published genome for medicinal use), Finola (FN) (hemp), CS10 (medicinal),
Cannabio-2 (medicinal) and JL (wild) [9–12]. The CS10 hybrid assembly (RefSeq
GCF_900626175.2) has been the gold-standard reference available at NCBI.

A wealth of resequencing and high-density genotyping data has been recently generated,
mostly to perform diversity and phylogenetic analyses (340 samples from Lynch et al. [13],
40 cultivars from McKernan et al. [14], 100 accessions from Ren et al. [15], and the German
Genebank (IPK) collection from Woods et al. [16]. Transcriptome data were also available
from RNA-Seq experiments used for single nucleotide polymorphism (SNP) discovery
(Booth et al. [17], Zager et al. [18], Livingston et al. [19], and Braich et al. [20]). Commercial
entities also contribute to genotyping datasets, albeit using low coverage resequencing that
targets cannabinoid synthases (Phylos dataset NCBI PRJNA347566, PRJNA510566; European
Variation Archive PRJEB49958 vs. Cannatonic reference). Kannapedia also has an
explorable phylogenetic tree [21], with data derived from targeted sequencing, published
whole genome sequencing, and their genotyping chip. To demonstrate the utility of
commercial databases, Aardema et al. [22] used datasets downloaded from these resources
and, using genome-wide association studies (GWAS), found they may have sufficiently
high-quality information for most interesting traits like THC and cannabidiol (CBD) content.
They also found genotype correlation for other chemical and agronomic traits, but less
reliable on subjective effects from usage. Using nine commercial collections,
Halpin-McCormick et al. [23] found inconsistencies in the population structures based on
use type, but observed structure based on geo-reference. The authors also observed
broader genetic diversity in modern cultivars compared to landraces.

Motivation for Cannabis genotype database
There is clear value in consolidating and integrating existing public data in order to
increase the power of these discovery analyses. An identified gap is the coordinated
approach to unifying/consolidating these isolated genotyping datasets in a data portal with
a single query point and a user-friendly graphical interface. Sites are hosting public
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Cannabis datasets, like CannabisGDB [24] for gene loci prediction, proteins and metabolites.
CoGE [25] is a general database for comparative genomics for genomes mostly taken from
NCBI. However, they also host Cannabis genomes and resequencing data not available in
NCBI (e.g., JL DASH, First Light and JL Mother). None of these sites hosts public genotype
datasets for cannabis, especially in a readily usable format. Furthermore, genome variant
mining tools are notably absent in these resources.

Web applications to host large genotype datasets like Gigwa, MaizeGDB SNPversity, and
KnowPulse Tripal Genomic Variation have been used in crops [26–28]. After the release of
sequences from the 3000 rice genomes project [29], SNP-Seek [30–32] was developed to
provide the rice research community with a comprehensive tool to mine this resource for
allelic variation relative to reference genomes. Given the utility and popularity of SNP-Seek
for rice, we chose the SNP-Seek software infrastructure to host a genotyping data portal for
cannabis.

IMPLEMENTATION
Variant data generation
We utilized publicly available Cannabis sequences and community-standard variant
discovery methods to generate the genotyping dataset for the portal.

Resequencing data sources
Without traceable gene bank passport information, we had to rely on the limited sample
descriptions available from publications and NCBI BioSample (RRID:SCR_004854) entries.
We restricted this study to the available information on plant use or type (e.g., hemp,
medicinal, or CBD), which is provided by most of the studies. Some studies also include data
on terpenoids and cannabinoids.

A summary of the samples we used is presented in Table 1. Most of the samples are from
multi-varieties next-generation sequencing (NGS) whole-genome resequencing projects to
study cannabis diversity. Some are from genome resequencing projects, others from
targeted resequencing (e.g., Phylos) and RNA-Seq. Three genotype matrices were generated
for each reference: whole genome sequencing-7 sources (WGS7DS), trichome RNA-Seq 26
samples (26TRICH), and PHYLOS amplicon. For WGS7DS, the number of samples for each
cultivar type based on published data is summarized in Table 2.

Reference genomes used
Three genomes, cs10, PK and FN [9, 10, 36], were used as references for variant calling. They
represent the Cannabis diversity for CBD, drug, and hemp types. Cs10 was annotated with
genes from NCBI RefSeq (RRID:SCR_003496), while PK and FN have publicly available
RNA-Seq data for gene prediction.

Variant-calling workflow
GATK (RRID:SCR_001876) [37] and NVIDIA Parabricks [38] germline pipelines were used for
variant discovery, and were benchmarked using the cs10 assembly. With comparable
results but significantly faster run times, as determined by our benchmarking studies [39],
Parabricks was used for all genome assemblies (cs10, PK, and FN). Resequencing datasets
were either genomic or RNA-Seq. NGS FASTQ sequences were downloaded from NCBI
Sequence Read Archive (SRA) (RRID:SCR_004891) and Kannapedia [21]. Trimmomatic
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Table 1. Publicly available NGS datasets used for cannabis SNP discovery.

Dataset Reference Cultivars
WGS7DS – 7 whole

genome NGS datasets
[13]

10.1080/07352689.2016.1265363
PRJNA310948

(55) Afghan_Kush_1, Afghan_Kush_2, Afghan_Kush_3, Afghan_Kush_4, Afghan_Kush_5,
Afghan_Kush_6, Alaskan_Thunderfuck, Auto_AK47, B-5, Blue_Dream_3, Blueberry_DJ,

Cannatonic, Carmagnola_1, Carmagnola_2, Carmagnola_3, Carmagnola_4, Carmagnola_5,
Carmagnola_6, Chem91, Chinese_hemp, Chocolope_1, Dagestani_hemp, Durban_Poison_1,

Durban_Poison_2, EuroOil_2, Feral_Kansas, Feral_Nebraska_1, Feral_Nebraska_3, G13,
Girl_Scout_Cookies_1, Golden_Goat_2, Grape_Ape_1, Harlequin, Hawaiian, Hindu_Kush,

Jack_Herer_1, Kompolti_1, Kompolti_2, Kunduz, Lebanese, Liberty_Haze, Low_Ryder,
Maui_Waui, OG_Kush, Original_Sour_Diesel, Pre-98_Bubba_Kush, R4, Rocky_Mountain_Bluberry,
Sievers_Infinity, Skunk_#1, Somali_Taxi_Cab, Super_Lemon_Haze, Tangerine_Haze, Tora_Bora,

White_Widow_1
[14]

10.1101/2020.01.03.894428
PRJNA575581

(40) 80 E-1, 80 E-2, 80 E-3, Arcata Trainwreck, Black 84, Black Beauty, BlueBerry Cheesecake X JL
Male, C3/USO-1_F1_15_CSU, Carmagnola_3, Carmaleonte, Chem 91, Citrix, CS_1_2016_CSU,

Domnesia, Eletta Campana, Fedora17_6_1_CSU, Grape Stomper, Harlox, Headcheese, Herijuana,
IdaliaFT_1_CSU, Jamaican Lion ˆ4 #1, Jamaican Lion ˆ4 #2, Jamaican Lion ˆ4 #3, Jamaican Lion ˆ4
#4, Jamaican Lion ˆ4 #5, Jamaican Lion ˆ4 #6, Jamaican Lionˆ3 Father, Jamaican Lionˆ3 Mother,

Jamaican Lionˆ3 Mother PCR, Master Kush, Merino_S_1_CSU, Mothers Milk #5, Red Eye OG, Saint
Jack, Sour Diesel, Sour Tsunami, Sour Tsunami x Cataract Kush, Tahoe OG, Tiborszallasi

Kannapedia
https://medicinalgenomics.com/

kannapedia-fastq

(58) AK47, AfghanKush, Afgooey, AlaskanIce, ArcataTrainWreck, ArjanUltraHaze2,
AustralianBastard, BlueBerryCheeseCake18, BlueBerryCheeseCakeBC2Fem, BlueBerryEssense,

BlueDreamSCC, Breakthrough, C4XCanatsuSCC, CBDMangoHaze, CanaTsuSCC, CaseyJones,
CheeseGHS, ChemDawg91, ChemDawg, ChemDog18cycles, ChemDog, ChemdogXCherryPieSCC,

Cinex, DakiniKushMale, DeepPurpleHaze, DiamondGirl, EastCoastSourDiesel, FireOG,
G4XSFMSCC, GirlScoutCookie, GrapeStomper, GreenCrackSCC, Haleys, JackHerer, JambaCity,
KushITSCC, LuckyCharms, MicheNepalMale, MoonshineHaze2, OGKushSCC, OGKushTest1,

OGXPKSCC, PKX808OGSCC, PureKush, RedDevil, Ringo, RioNegraMale, RollexKush, SSHXWWSCC,
SecretOG, SensiStarXSFMSCC, SnoopDream, SourTsunami, SuperLemonHaze, TrainwreckSCC,

WIFIGTUBE, WIFI, WZ, Watermelonhazemale, WhiteWidow, WonderWoman, YeddiMale
[15]

10.1126/sciadv.abg2286
PRJNA734114

(82) Uniko B HUO, Fibranova IFA, Kompolti HKI, Beniko PBO, Carmagnola 2 ICA2, Tiborszallasi
HTI, Big Bud BBD, Big Skunk BSK, Delta-llosa SDA, Swaziland SWD, Ruderalis Indica RIA, Top 44
TOP, Northern Light NLT, Alpine Rocket ART, Haze HAE, Mexican Sativa MSA, Hawaii Maui Waui

HMW, PP9, Hindu Kush HKH, Juso14 UJO, IUP1, IUP2, IUP3, B52, IUL1, IUL2, IUL3, IBR1, IBR2,
IBR3, PID1, PID2, PCL1, PCL2, Bialobrzeskie PBE, VIR 469-1 KAK1, VIR 469-3 KAK3, VIR 469-2
KAK2, VIR 483-1 UTT1, VIR 483-2 UTT2, VIR 483-3 UTT3, R2in135-1 NER1, R1in136-1 ERM1,

R3in134-1 NEB1, VIR 37, Novgorod-Seversky, cv UNS, Ferimon 12 FFN, VIR 201 UKE, VIR 369 BUA,
VIR 493, Glukhovskaja 10 Zheltostebel’naja UGA, VIR 507, Krasnodarsky 10 FB RKY, IBE,

R1in136-2 ERM2, R1in136-3 ERM3, R2in135-2 NER2, R2in135-3 NER3, R1in136-4 ERM4, Fedora 17
FFA, R3in134-2 NEB2, R2in135-4 NER4, R3in134-3 NEB3, VIR 223, Bernburgskaya Odnodomnaya,
bm GBA, R3in134-4 NEB4, Wild Thailand THD, missing PEU, Colombian 8 COA, VIR 449, Szegedi 9

HIS, XHC1, Santhica 27 FSA, XHC2, XGL1, XGL2, XBL1, XBL2, XUM1, IMA, XUM2, SCN, QHI,
Carmagnola 1 ICA1, YNN, GXI, Chamaeleon NCN

From various NGS sequencing projects [34] 10.1038/s41598-020-75271-7 PRJNA669610 (2) CBDA pool, THCVA pool
[33] 10.1093/genetics/iyab099 PRJNA723060 (3) Carmagnola, USO31, Carmagnola x USO31

[16] PRJNA866500
10.1093/g3journal/jkac209

(135, w/ replicates) Bialobrzesk, Carmagnola, Carmealon, Dac, Dia, Eletta Campa, Fedora_17,
Felina, Ferimo, Futura, IPK_100, IPK_16, IPK_17, IPK_18, IPK_19, IPK_20, IPK_21, IPK_22, IPK_23,
IPK_24, IPK_26, IPK_27, IPK_28, IPK_29, IPK_30, IPK_31, IPK_32, IPK_33, IPK_34, IPK_35, IPK_36,
IPK_37, IPK_38, IPK_39, IPK_40, IPK_41, IPK_42, IPK_43, IPK_44, IPK_45, IPK_46, IPK_48, IPK_49,
IPK_50, IPK_51, IPK_52, IPK_53, IPK_54, IPK_55, IPK_56, IPK_57, IPK_58, IPK_59, IPK_60, IPK_61,
IPK_63, IPK_64, IPK_65, IPK_68, IPK_69, IPK_70, Jiang, Lovr, Meng, Monoi, Santhica, Tiborszalla,

Tis, Tyg, US_feral, USO_31
From genome assembly projects CBDRx, Purple Kush, Finola, Jamaican Lion-DASH, and JL

PHYLOS BioProjects PRJNA347566
PRJNA510566

2,223 cultivars

21TRICH
21 RNA-Seq sequences

collected from
trichomes

[18] PRJNA498707 Sour Diesel, Canna Tsu, Black Lime, Valley Fire, White Cookies, Mama Thai, Terple, Cherry Chem,
Blackberry Kush

[17] PRJNA599437 Afghan Kush, Blue Cheese, CBD Skunk Haze, Chocolope, Lemon Skunk
[19] PRJNA483805 Finola bulbous, sesille, stalked
[20] PRJNA560453

SRR10600904, SRR10600906,
SRR10600907, SRR10600908,
SRR10600912, SRR10600913,
SRR10600916, SRR10600918,
SRR10600920, SRR10600922,
SRR10600923, SRR10600925

Cannbio-2 trichome, four development stages, three replicates

26TRICH – 21TRICH
update

[35] PRJNA706039 chemdawg, headband, ghost_ogxbk, tahoe_ogxbk, westside
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Table 2. Summary of cultivar types for the Whole-Genome dataset WGS7DS.

WGS7DS cultivar types Sub-type No. of sample
Hemp Hemp-type 132

Type III 9
Drug Drug-type 17

NLDT 26
BLDT 12

Drug-type feral 17
Type I 29

Basal cannabis 14
Type II 17

(RRID:SCR_011848) [40] was used to trim adapters before running the variant calling
pipelines. Following the GATK Germline Pipeline for the genomic sequences [41],
BWA-MEM2 (RRID:SCR_022192) [42], GATK MarkDuplicate was run to generate the BAM
alignment file for each sample. BioSamples with multiple sequence samples were merged
using GATK MergeSAM before using GATK HaplotypeCaller to generate GVCF files.
GenomicsDB was used for merging all sample GVCF, then GenotypeGVCF to generate the
VCF file with parameters -- heterozygosity 0.013 -- indel-heterozygosity 0.0013, based on
result from a previously analyzed subset.

Variant calling for a large number of accessions is notoriously slow using GATK
HaplotypeCaller-based pipelines. To speed this up, we explored accelerated methods for
variant calling. Parallel runs were performed to compare the speed, resource usage, and
accuracy between GATK and Parabricks. The optimized workflow in Figure 1 incorporating
Parabricks includes the following steps: (1) fq2bam: each NGS sequence read was aligned to
the reference; (2) haplotypecaller: the variants were discovered by distributed runs by
sample and chromosome; (3) GenomicsDBImport: all samples were combined into a
GenomicsDB database by chromosome; (4) GenotypeGVCF: joint genotyping was performed
to get dataset-wide statistics and variants; finally, (5) GatherVCFs: all chromosome variants
were concatenated at the end for the resulting whole genome. Each step was performed by
a software module of either GATK for the CPU version, or Parabricks for the GPU version.
With a considerable improvement in speed and minimal difference in results, we used
Parabricks over GATK on the discovery for all the references.

For the RNA-Seq pipeline based on the GATK pipeline presented in Figure 1 (top right),
STAR (RRID:SCR_004463) [43], GATK MarkDuplicate, SplitNCigar and MergeSAM were used
to generate the BAM files, followed by variant calling as described above. Similarly,
Parabricks rna_fq2bam was run for the benchmarking study. The RNA-Seq variant calling is
similar to that for genomic except for an intermediate correction step on the alignment
results using SplitNCigarReads to account for exons.

Running Parabricks is straightforward using pbrun fq2bam and pbrun haplotypecaller.
Parabricks was used for its speed advantage (15–20× faster) and lower usage (5× less) of
computing service units. However, the merging of sample GVCF files was done using legacy
GenomicsDB as Parabricks does not generate muti-sample GVCF with a large sample size.
GATK GentotypeGVCF was then used for joint genotyping using the generated GenomicsDB
databases. The implementation of this workflow is described in Protocol 1 in [44].

The SNPs were then separated from the indels using the BCFtools (RRID:SCR_005227) [45]
norm and filter functions with this pipeline:
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Figure 1. Genomic and RNA-Seq Variant calling pipeline using GATK and Parabricks.
Parabricks was used in the whole genome sequences, while GATK was used in the RNA-Seq variant calling of
samples. GATK GenomicsDB was used to merge and genotype all samples jointly. The pipeline is optimized for the
shortest wall time while maintaining sensitivity using high-performance computing environments with graphic
processing units. Tasks are split and distributed whenever possible by the S samples and I genomic intervals. Each
chromosome is considered as one interval, while all unassembled contigs are combined as one interval.

bcftools norm --atom-overlaps . -c w -a --fasta-ref reference.fasta input.vcf.gz
| bcftools filter -i 'TYPE="snp"'| bcftools norm -m +any -Oz -o
output.snpsonly.vcf.gz

Finally, the SNP attributes were recomputed using bcftools +fill-tags to generate the
datasets for the analyses below and loaded into the CannSeek database.

SNP data storage and retrieval
Detailed implementation of this section is described in Protocol 2 in GigaDB [44]. SNP data
are hosted in CannSeek (RRID:SCR_025579), an SNP-Seek instance for fast query and
visualization. The generated VCF file was transformed into an SNP matrix using a bcftools
query, then to HDF5 using customized software that utilizes the HDF5 library. The web
application features the Genotype Query page to retrieve a subset of the genotype matrix
constrained by dataset and chromosome region. The SNP query result can be filtered
further for synonymous or non-synonymous, sample name, dataset, or allele values in
positions. The matrix is displayed on the application and can be downloaded in various
formats (e.g., csv, tab-delimited, Flapjack, or PLINK).

As an external application that is part of the ICGRC Tripal server [46], CannSeek Apache
Tomcat and its Postgres database run inside separate Docker/podman containers.
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CannSeek database
The SNPs were loaded into the CannSeek database, derived from the Rice SNP-Seek
Database [32], and made available in the Genotype Viewer [47] as part of the ICGRC portal.
This allows easy and fast access to variant datasets for the cannabis research community.
Figure 2 shows the CannSeek query interface. The datasets are first selected by the
‘Reference’ used, ‘Cultivar set’, and ‘SNP set’, which is basically the SNP matrix of samples
(cultivar) by SNPs called against the selected reference assembly. The ‘Cultivar set’ options
depend on the selected ‘Reference’, and the ‘SNP set’ options depend on the selected
‘Cultivar set’. Currently available are the [cs10, pkv5, fnv2] references, and the
[6_wgs,7_wgs,phylos,trichomes_rnaseq,trichomes26_rnaseq] cultivar sets for all references.
Genotype data publicly shared by publications were also loaded similarly to Woods
et al. [16] for cs10. Details of the different datasets are listed on the CannSeek page. Multiple
cultivar sets can be selected where the resulting genotype matrix is a concatenation of
sample rows, and the SNP columns are the union or intersection depending on the
‘Combine by’ option. This is convenient for verifying the allele calls made on the same
sample from different matrices, like the shared samples in the WGS6DS, WGS7DS, and
Woods et al. sets. The SNPs to display could be “All”, “All with highlighted nonsynonymous”,
or “Nonsynonymous only”, where synonymy is based on the gene models by RefSeq for
cs10, and the predictions by FINDER for pkv5 and fnv2. Once the dataset is selected, the
region is constrained by the ‘Chromosome’, ‘Start’, and ‘End’ base positions. The positions
can also be filtered by choosing from the ‘Gene locus’ options. The query result is the SNP
matrix that satisfies the query options. The allele or genotype frequencies of SNP are
plotted at the bottom of the matrix. The matrix displayed is downloadable in csv, tab, plink,
or Flapjack formats. The haplotype viewer in Figure 3 represents the result matrix with the
samples reordered after clustering. The color-coding of alleles as reference homozygous
(gray), alternate homozygous (red), and heterozygous (gray) gives an instant visual
overview of the genomic diversity of the queried region, while the clustering of alleles
indicates the different haplotype blocks. The clustering calculation details and the resulting
cluster alleles are also provided.

Data download and API
The ICGRC Omics API is designed to programmatically access cannabis-omics datasets by
web services (see accompanying paper ICGRC [48]) and is documented in the icgrc.info site
menu (Infome:Omics API Documentation). This includes the variant datasets generated in
this project. Users can customize their SNPs filter criteria using the Omics API
(/user/variant/{keyword_region}), guided by the information provided in the frequency
distribution plots of the SNP properties shown in Figures 4 and 5.

For genome-wide studies, however, it is recommended to download the PLINK-formatted
data from the ICGRC Download page [49] and use it as shown in the accompanying Jupyter
notebooks and Python modules in the ICGRC Omics API documentation [50] and
demonstrations [51, 52].

SNP analyses and visualizations
Haplotype blocks
Haplotype blocks were detected by clustering the samples based on the similarity of SNPs.
SNPs were clustered using the hamming distance, a tree constructed using R statistical
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Figure 2. CannSeek SNPs query interface.
The CannSeek genotype viewer [47] is an interactive web application to query a subset of the large genotype matrices. The user specifies the dataset, genomic
region, and display options. The alleles are color-coded to indicate reference match, and the synonymous or non-synonymous mismatch. Further filtering by
column value can be performed on the result. The matrix can also be downloaded into csv, tsv, flapjack, or plink formats.
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Figure 3. CannSeek Haplotype viewer.
The Haplotype viewer of CannSeek clusters the samples of the queried region and displays the heatmap of allele values. In this example, it used the WGS7DS
dataset, cs10 reference in the region of LOC115697762 (XP_030480746.1 cannabidiolic acid synthase), chromosome 7 30.98Mb. The heatmap colors indicate
reference alleles (gray), alternate (red), heterozygous (yellow), and missing (white). The legacy cultivar type information and cluster group are colored in the
last columns. This particular region shows a good match of haplotype cluster and hemp/drug type.

software (RRID:SCR_001905) and the result made available in Newick format. The Python
Toytree library was used to visualize the tree and blocks and to export them into SVG
format.

With the phylogeny and allele matrix, samples are ordered using the tree leaves order,
and the heatmap of alleles is plotted beside the tree. Tree leaf labels are color-coded using
available sample types (type I, I, III, or hemp/marijuana). Alleles are color-coded based on
their match with the reference (gray: reference homozygous; red: alternate homozygous;
yellow heterozygous; white: missing). The scripts are available in the ICGRC Data
Generation Protocol step 17 [53], which can be run as a Jupyter Notebook
(RRID:SCR_018315).

SNP Concordance/Discordance
The SNP sites that are unique and common between two datasets are identified using the
bcftools stats. Unique and common SNP sites were identified using these dataset pairs:
wgs7ds-26trichs, wgs7ds-phylos, and 26trich-phylos. A site discordance analysis was
performed using the VCFtools (RRID:SCR_001235) [54] comparison options (gzdiff,
diff-site-discordance). Then, the output diff.sites_in_files files were processed to count the
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Figure 4. Distribution of SNP attributes for WGS7DS using (a) cs10, (b) pkv5, or (c) fnv2 references.
SNP properties (left to right): Call rate, MAF, Fraction heterozygous, and -log(HWE) distributions of the WGS7DS dataset, including all (gray), hemp-type
(blue), and drug-type (red) samples. The step lines are the cumulative count when filtering from the most relaxed (maximum, no filter) to the most conservative
(minimum) for quality control. The properties were counted on the vcf file using bcftools +fill-tags, and the histogram was plotted using Python matplotlib.

allele concordance or discordance for each site. Concordance was computed from allele
matches, while discordance was computed from allele mismatches for a given SNP site and
sample.

Validation of the SNP datasets generated from this study was done by comparing them
against publicly available genotype files that use a common set of samples. For datasets
having common samples, VCFtools with options gzdiff, diff-site-discordance, and
diff-inv-discordance was used. Then, the concordance/discordance distribution by site and
sample were plotted. Two comparisons were made: wgs7ds-woods2022 using the IPK
samples on cs10 from Woods et al. [33], and wgs7ds-RevGen using PHYLOS samples on pkv5
from Rev Genomics [55].
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Figure 5. Distribution of more SNP attributes for WGS7DS using (a) cs10, (b) pkv5, and (c) fnv2 references.
SNP properties (left to right): log(Read Depth DP) rate, log(Quality), and -log(ExcHet) distribution and Genotype vs. Allele Frequency (HWE) plots of the
WGS7DS dataset, including all (gray), hemp-type (blue), and drug-type (red) samples. The step lines are the cumulative count when filtering from the most
relaxed (maximum, no filter) to the most conservative (minimum) for quality control. The properties were counted on the vcf file using bcftools +fill-tags, and
the histogram was plotted using Python matplotlib.

Genome-wide phylogenetic tree
To generate a whole-genome phylogeny, the SNP datasets were strictly filtered using
bcftools with these include parameters (F_MISSING<0.5 & MAF>0.2 & QUAL>100000 &
(ExcHet>0.5 | HWE>0.5)), and then LD pruned using bcftools +prune with parameters
-m 0.8 -w 100kb. Two tree construction methods were tried, FastTreeMP
(RRID:SCR_015501) [56] based on maximum likelihood, and identity-by-state (hamming)
distance matrix using plink (distance 1-IBS) followed by neighbor joining. Python Toytree
library was then used to lay out the resulting Newick files into circular phylogenetic trees.
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Table 3. BUSCO scores obtained using the Viridiplantae lineage of predicted PK PKv5 and FN FNv2 genes from
FINDER predictions.

BUSCO output Purple kush, PKFD Finola, PKFD
Gene loci 41,971 33,704

Complete BUSCOs (C) 268 (63%) 240 (56.4%)
Complete and single-copy BUSCOs (S) 159 (37.4%) 208 (48.9%)
Complete and duplicated BUSCOs (D) 109 (25.6%) 32 (7.5%)

Fragmented BUSCOs (F) 92 (21.6%) 138 (32.5%)
Missing BUSCOs (M) 65 (15.4%) 47 (11.1%)

Total BUSCO groups searched 425 425

Multi-dimensional Scaling (MDS) plot
The WGS7DS, 26TRICH, and Phylos datasets were merged using bcftools, and then filtered to
include only SNPs present in both Phylos and WGS7DS. Identity-by-descent distance matrix
and MDS coordinates with five components were calculated using TASSEL v5
(RRID:SCR_012837) [57]. The first three components were plotted using a 3D scatter plot of
Python plotly library, together with sample information. JavaScripts that allow searching
and highlighting data points were then added.

RESULTS
Characterization of generated SNPs
The implementation of this section is part of Protocol 1 in [53]. Gene models already
available from NCBI Refseq were used for the cs10 genome. For the unannotated PK and FN
genomes, FINDER [58] was used to predict gene models, using their genome-specific
publicly-available mRNA-Seq sequences as evidence described in the ICGRC Data
Generation Protocol step 2 [52]. BUSCO (RRID:SCR_015008) [59] scores of predicted genes
using the viridiplantae lineage are shown in Table 3. SnpEff (RRID:SCR_005191) [60] was
then run using the gene models to annotate effects of SNPs on gene functions.
Specifically, non-synonymous and synonymous SNPs were tagged for visualization and
filtering.

In addition to the whole samples set in WGS7DS, separate hemp-type and drug-type
sample subsets were generated, and their SNP property distributions were recalculated.
Concordance between datasets was determined using bcftools stats. In the CannSeek
viewer, the SNP data made available are unfiltered to be flexible to different research
objectives of end-users.

SNP discovery between datasets and references
Table 4 summarizes the number of SNPs and indels discovered for each dataset and
reference genome used, and the number of non-synonymous SNPs for the gene models
used. The number of SNPs in the WGS7DS set ranges from 91M for cs10 and 109M for fnv2
to 118M for pkv5. The relative number of SNPs for the WGS7DS set against the three
references was not as expected. The number of SNPs against fnv2 was between those
against cs10 and pkv5 when cs10 and pkv5 are supposed to be more related. The SNP
property (Call rate, Minor Allele Frequency, Fraction heterozygous, and HWE p-value)
distributions in Figure 4 show how the sample types and references affect the SNP counts.
Each histogram plots three groups: all WGS7DS samples, including unknown types (gray),
the hemp type in WGS7DS (blue), and the drug type in WGS7DS (red). The discrepancies
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Table 4. Summary of the raw SNPs and indels discovered.

WGS7DS cs10 Pkv5 Fnv2
Samples 383 383 381
Records 104M 134M 126M

SNPs 91M 118M 109M
Indels 17M 22M 21M

Multiallelic sites 24M 30M 24M
Multiallelic SNP sites 8M 10M 8M

Non-synonymous SNPs 1,334,787 956,874 523,839
Synonymous SNPs 1,099,894 753,159 471,842

PHYLOS cs10 Pkv5 Fnv2
Samples 2216 2202 2172
Records 323,953 225,422 168,956

SNPs 297,603 205,798 146,936
Indels 59,068 41,736 40,511

Multiallelic sites 94,527 65,399 37,374
Multiallelic SNP sites 26,992 18,796 17,516

Non-synonymous SNPs 26,221
Synonymous SNPs 14,778

26TRICH cs10 Pkv5 Fnv2
Samples 26 26 26
Records 6,274,992 397,1367 7,424,449

SNPs 5,201,244 3,105,123 5,808,480
Indels 1,107,288 355,583 508,952

Multiallelic sites 427,400 35,583 508,952
Multiallelic SNP sites 31,288 18,614 32,700

Non-synonymous SNPs 361,824
Synonymous SNPs 437,756

Table 5. Concordance between NGS datasets using cs10 reference.

WGS7DS vs. 26TRICH 26TRICH vs. PHYLOS WGS7DS vs. PHYLOS
Set A WGS7DS 26TRICH WGS7DS
Set B 26TRICH PHYLOS PHYLOS

Positions unique to set A 76,052,660 5,105,271 79,671,208
Positions unique to set B 1,423,190 269,790 206,257

Common positions (i+ii+iii+iv+v) 3,706,099 24,018 87,551
(i) Biallelic concordant 3,098,083 21,213 60,812
(ii) Multiallelic concordant 16,813 34 717
(iii) Multiallelic partial concordant 490,670 1,713 16,270
(iv) Biallelic discordant 94,142 1,013 8,949
(v) Multiallelic discordant 6,391 45 803
Discordant/concordant

(iii+iv+v)/(i+ii+iii)
0.164 0.121 0.334

observed were investigated using these plots, as explained in the Discussion section. More
SNP property (read depth, quality, and excess heterozygosity p-value) distributions, and
Genotype frequency vs. Allele frequency (HWE) are plotted in Figure 5.

For 26TRICH, which are mostly drug samples (23 of 26), 5.2M cs10, 3.1M pkv5, and 5.8M
fnv2 SNPs are the expected relative numbers. For the Phylos samples, the SNP numbers are
297k for cs10, 205k for pkv5, and 147k for fnv2, the relative number between references
was not expected since these are commercial samples; hence, most are drug-types and
should have the most variations against fnv2.

The number of common and unique SNPs between the three datasets (WGS7DS, 26TRICH,
PHYLOS) is summarized in Table 5. Using the cs10 reference, the number of shared SNPs
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Figure 6. Distribution of SNP attributes for (a) WGS7DS, (b) 26TRICH, and (c) PHYLOS dataset using cs10 reference.
SNP count distribution (blue) of SNP properties including (left to right) Call rate, MAF, Fraction heterozygous, and -log(HWE). The line (yellow) is the
cumulative count when filtering from the most relaxed (maximum, no filter) to the most conservative (minimum) for quality control. The properties were
counted on the vcf file using bcftools +fill-tags, and the histogram was plotted using Python matplotlib.

between the sample sets was compared. For the WGS7DS, 72% of 26TRICH were in WGS7DS,
but only 30% of PHYLOS were in WGS7DS, and 8% of PHYLOS were in 26TRICH. For the
common SNPs, the discordant/concordant ratio was 0.16 for WGS7DS vs. 26TRICH, 0.12 for
26TRICH vs. PHYLOS, and 0.33 for WGS7DS vs. PHYLOS. The SNP property distributions for
the three datasets using the cs10 reference are compared in the histograms in Figure 6. For
the RNA-Seq-derived 26TRICH (b) and amplicon panel PHYLOS (c) datasets, the large
number of SNPs with low call rates could be due to ascertainment bias towards restricted
regions that may be deleted in many samples. However, when not deleted, these restricted
regions have a more uniform minor-allele frequency (MAF) distribution compared to the
sharp count decay at high MAFs for the WGS7DS Figure 6a, suggesting that the alleles in the
restricted regions are not rare.
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Figure 7. Concordance between (top) IPK samples inWGS7DS vs. Woods et al. 2022 using cs10, and (bottom)
PHYLOS samples vs. Revgen using PKv5 references.
With the two vcf files being compared as inputs, discordance was computed using VCFtools --diff-site-discordance
for (left) site discordance, and --diff-indv-discordance for (right) sample discordance.

Table 6. Concordance of SNPs between Cs10 and PK v5 genomes vs. publicly available genotyping results.

Concordance comparison Number of SNPs in each comparison
WGS7 vs. WOODS using cs10

Positions unique to WGS7 72,504,295
Positions unique to WOODS 1,219,985

Common positions 7,254,464
PHYLOS vs. REVGEN using PKv5

Positions unique to PHYLOS 81,443
Positions unique to REVGEN 1,782

Common positions 6,673

Concordance with other public variant sets
The variants discovered were compared to publicly available sets. Table 6 lists the number
of common and unique SNPs between the sets using the same set of samples. A total of 85%
of SNPs from Woods et al. [16] are shared with WGS7DS for the IPK samples using the cs10
reference, and 78% in REVGEN are shared with PHYLOS using the PK reference. For allele
concordance, Figure 7 (top) plots the concordance of the WGS7DS dataset and Woods et al.
using the cs10 reference, and Figure 7 (bottom) plots the concordance of the PHYLOS
dataset and the result from Rev Genomics using PK. The average site discordant/concordant
ratio was between 0.05 and 0.15, which translates to an 85–95% concordance rate. The 90%
site concordance rate is typical, based on studies comparing different variant calling
pipelines [61, 62].

Analyses utilizing the discovered SNPs: use-cases
The following examples demonstrate the utility of the SNP database for diversity analyses
at the population level with the construction of phylogenetic trees and MDS plots,
highlighting the separation of hemp and medicinal cannabis samples. The SNPs of certain
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cannabinoid loci combinations can also group the samples into haplotype blocks that match
the types. Lastly, an association analysis was performed using available cannabinoid
concentration data on selected samples using the plink regression function.

Phylogenetic tree of hemp and tetrahydrocannabinolic acid (THCA) dominant
cultivars
Phylogenetic trees using the WGS7DS SNPs called against all reference genomes are shown
in Figure 8. The filtered sets for tree construction using the criteria described above gave
326,775 SNPs for cs10, 169,519 SNPs for pkv5, and 285,186 SNPs for fnv2. Included were
samples of different use-types (left) as hemp/drug based on the published classifications
summarized in Table 2, and from different project sources (right). The reads used to
generate the reference assemblies were also included. For tree construction, the
FastTreeMP method was selected, which uses maximum likelihood rather than
distance-based methods.

Using the cs10 reference, the tree in Figure 8 (row 1, left) separates the drug (red) and
hemp (blue) types, except for some Jamaican Lions, which are type II but labeled hemp here
based on the low THC content from the plot in figure 3 of McKernan et al. [14] and the US
ferals. The US ferals are a diverse group labeled as unknown type but clustered near the
hemp groups. Analyses by Woods et al. [16] identify the US ferals as drug type, while Busta
et al. [63] found them as more hemp than drug. Their position in the middle of the tree
between the drug and hemp branches reflects this uncertainty. We also observed that the
type II samples clustered with the drug type. No hemp/drug annotations were provided by
Woods et al. [16] but, for the IPK samples, THCA data from Gloerfelt-Tarp et al. [64] were
used to classify using the legal threshold of 0.3% for hemp/drug.

To check for batch (data source) bias, the same tree is colored by dataset source in
Figure 8 (row 1, right). The scattered location of samples from the same source [13–16] in
the tree could indicate that the batch effect did not introduce any bias in the hemp/drug
classification. The samples from Kannapedia (green) grouped together either because they
are all drug type (a reasonable assumption for commercial samples), or since they have
very low read coverage compared to the rest. Identifying batch effect in merged NGS
sequences is discussed in detail later with reference to other studies specifically
investigating this concern.

Exploring relative genetic distances between all samples
For another clustering, we merged all datasets WGS7DS, 26TRICH, and PHYLOS and
performed multidimensional scaling (MDS). The first three components were plotted in a
3D scatter plot color-coded by data source. Given the unavailability of passport information
for most samples and the different genotyping coverage and technologies used, the result
was a very coarse representation of cannabis diversity using publicly available data. An
interactive MDS plot in Figure 9 to explore all samples is available at [65].

The next two use-cases use the ICGRC-omics API described in the documentation [51] to
access SNP data for repeated analysis on different genome regions or to access sample
information while using a downloaded genotype matrix.

Haplotypes for cannabinoid synthases
To demonstrate the utility of allele mining, we queried gene loci for cannabinoid synthases
in cs10. The goal was to find the subset of loci that would produce the SNP clustering most
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Figure 8. Phylogenetic tree colored by (left) type and (right) dataset, using three references (row1) cs10,
(row2) PK, (row3) FN.
The trees on the left are colored by use type (red: drug, blue: hemp). Dots indicate the reference genomes (green:
cs10, red: PK, blue: FN). On the right, they are colored by data source (brown: McKernan 2020, red: Lynch 2016,
blue: Woods 2022, green: Kannapedia, cyan: Ren 2021, orange: assembly projects). The trees are constructed by
FastTreeMP using the WGS7DS dataset and the cs10, pkv5 and fnv2 references.
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Figure 9. Interactive Multi-dimensional Scaling Plot with all samples.
Relative genetic distances between all samples using SNPs called against the cs10 reference can be explored using
the interactive MDS plot [65]. The samples are colored by data source and can be searched by name or sample
type. Hovering over the point shows the sample details. figure-9.html

consistent with the available hemp/drug classification from published sample information.
The Jupyter notebook demonstration [66] uses the API to fetch sample information and
pre-downloaded filtered genotype data. Using only samples with hemp/drug information,
SNPs from all 1-locus, 2-loci, and 3-loci combinations of cannabinoid genes were clustered
by Identity by State (IBS) using plink -cluster into two groups (K = 2). The distance between
the partition between the SNP clustering and the grouping from hemp/drug information
was measured using Variation of Information, VI [67]. The different loci subsets were then
ranked by VI --low values indicate better partition matches. Figure 10 shows the (a) best
1-locus, (b) worst, and (c) best loci combination to match the sample types. The best 1-locus
clustering was for LOC115697762 (XP_030480746.1, cannabidiolic acid synthase) at 30.9 Mb
of chromosome 7 within the region identified in Grassa et al. [9]. This is the same locus
displayed in Figure 3 using the CannSeek haplotype viewer interface. The best VI was from
clustering three gene loci (Figure 10c). The clustering of hemp (blue) and drug (red) samples
is evident from the tree in these loci.

Regression of SNPs against cannabinoid concentrations
Woods et al. [16] provide whole-genome resequencing data for the IPK cannabis collection,
while Gloerfelt-Tarp et al. [64] measured cannabinoid concentrations for samples for the
same collection. Although they are neither from the same plant nor sample, and were
generated by separate groups, the cultivars came from the same source at IPK. With the
assumption that they have identical genotypes, we applied GWAS methods using these data.
The number of samples (N = 84) was not very large; hence, this did not qualify as a proper
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Figure 10. Cannabinoid synthase loci with (a) best 1-locus, (b) worst, (c) best 3-loci combination
partitioning to match the sample hemp/drug annotation.
Blue/red tree nodes indicate hemp/drug samples. Only samples with hemp/drug information were used. Haplotype
clustering was done using different combinations of genomic regions coding for cannabinoid synthases using the
omics API and the Jupyter notebook. VI was calculated to measure the match between genotype clusters and
sample cultivar type. The heatmap and cluster tree for the best (lowest VI) and worst (highest VI) for 1-, 2-, and
3-loci combinations are shown. The heatmap colors indicate reference alleles (gray), alternate (red), heterozygous
(yellow), and missing (white).

GWAS study, but we still identified associations that may guide future investigations (results
are viewable at [68]). The Jupyter notebook uses the API to query the phenotypes from
Gloerfelt-Tarp et al. [64] and the downloadable plink dataset for WGS7DS. The plink-assoc
function considers only samples shared in the SNP and phenotype inputs.

DISCUSSION
While a wealth of DNA resequencing, transcriptome sequencing, and high-density
genotyping data, as well as several de novo assemblies, are publicly available for C. sativa, a
comprehensive tool/resource that allows for variant analyses across these datasets relative
to key reference genomes is missing. SNP data are widely used for established crop
research with wide applications. However, current limitations hinder full utilization, such
as the absence of a public gene bank database to host authoritative seed and passport
information. Agronomic and omics studies with traceable genotype data are also scarce for
robust statistical analysis. Clinical and organoleptic studies are collected by commercial
sites, and there are attempts to analyze them [22, 69]. The status is that most phenotypic
datasets are kept by commercial entities. An academic or non-government consortium, like
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ICGRC, can mediate data sharing and collaborations. The use-cases demonstrated the
various applications of these datasets for cannabis. Next, we discuss the uses and concerns
regarding this resource.

WGS7DS SNP properties distribution
The relative numbers of SNPs in the WGS7DS dataset against the three (cs10, fnv2, and
pkv5) references were not as expected based on the known reference types. In Figure 4, the
Minor Allele Frequencies show SNP spikes near zero, suggesting a high number of rare
alleles. Between the hemp and drug types, there is no large difference in the total number
of SNPs for all references used at 55M (cs10), 70M (pkv5), and 60M hemp and 70M drug
(fnv2). However, the drug type has slightly more (∼20%) non-rare (MAF>0.05) SNPs than
hemp using the fnv2 reference. With the cs10 and pkv5 references, the number and
distribution of SNPs for the hemp and drug types are identical. Excluding the rare alleles
SNPs (MAF<0.05), the numbers of SNPs for hemp, drug, and the entire WGS7DS set are
identical: approximately 25M against cs10, 35M against pkv5, 30M for hemp, and 35M for
drug and WGS7DS against fnv2.

The high number of rare SNPs may be attributed to the unknown sample type, since it
includes low-coverage samples and those from miscellaneous sources in small batches. In
addition, only ∼37M SNPs are shared between the hemp and drug subsets out of the ∼54M
each type has. With the exponential distribution of MAF, this could mean ∼34M SNPs (17M
unique to hemp + 17M unique to drug) have potentially low MAF in a combined dataset.

The most conservative threshold for fraction heterozygous (near zero) and -log(HWE)
(near zero) already gives a high number of SNPs, confirming the high heterozygosity of the
predominantly dioecious cannabis plant [8]. The Call rate distribution can be attributed to
the different data sources we used having varying coverage, sample types, and sequencing
methods.

In Figure 5, the Read Depth and Quality distributions are identical for the hemp,
medicinal, and complete WGS7DS samples. The absence of spikes near zero, or low-quality
end, indicates that low-quality calls are minimal with respect to the SNP universe. The
counts for low Read Depth for the complete WGS7DS set (gray) are higher than both the
hemp (blue) and medicinal types (red) due to the Kannapedia samples having low coverage
and unknown types. The same observation on higher counts of bad (near zero) ExcHet in
the complete set (gray) than the hemp and medicinal samples may be due to these low
coverage samples. In the Genotype Frequency vs. Allele Frequency plot, the heterozygous
data points (green dots) are mostly below the expected curve (green pq line) for random
mating, indicating most of the samples are not wild but products from inbreeding. Although
their pedigrees are undocumented, they are the result of clandestine breeding activities in
the past century.

Exploring the MDS clusters
In the interactive MDS plot at [65], the data points are grouped/colored by the data source.
The user can hover over the points to show the details. The points can also be searched by
name, use-type (hemp/drug), chemovar (type I, II, and III), or the original grouping assigned
by the source. The imposing groups clustering are from Ren et al. (blue), Woods et al. (cyan),
and Phylos (pink). However, the few drug-type samples from Ren et al. and Woods et al. are
separated from the rest of the group, which are mostly hemp-type. The opposite is the case
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for the McKernan et al. (red) and Lynch et al. (orange) samples, which are mostly drug-type,
with a few hemp-types separating from their group. The basal types are in the middle
between the drug and the hemp clusters. The Phylos samples have no type information, but
they tend to cluster towards the drug type, which is reasonable since these are commercial
cultivars. The Kannapedia samples (salmon) are all grouped into drug clusters, which was
expected since they are also commercial cultivars. The trichome RNA-Seq samples are
scattered at wider distances than the rest but still follow the drug/hemp sides. This plot can
guide researchers in identifying the type and relationships of cannabis samples deposited
in NCBI and other public sites, like finding close relatives with phenotype data.

Effect of using SNPs called against different reference genomes on
phylogenetic groups
The phylogenetic trees in Figure 8 show that cs10 and PK grouped with the drug samples,
while FN grouped with hemp types. The branches are longer for the drug samples than the
hemp samples when using the cs10 (row 1) or PK (row 2) references. The same observation
can be made for the hemp samples when using the FN (row 3) reference. This means the
resolution of the samples’ genetic distances is higher when the reference is of similar types.
This is counter-intuitive since the distances are supposed to be larger when the reference
cultivar is different from the samples. However, that is only true when comparing the
sample with the reference. When the samples are compared against each other, more
differences are expected when the reference used is of the same type. That is, the
differences or similarities are amplified when the reference is close to the samples being
compared.

A new phylogenetic tree was constructed using the new NCBI standard cannabis
assembly Pink pepper (released November 2023), as referenced in Figure 11. This tree
shows that Pink pepper is of drug-type, either type I or II.

Integrating NGS sequences from different sources
This study used NGS sequences generated from different projects, with each project
representing a batch of samples. Batch effects must be considered and corrected when
comparing abundance values from different batches or sources. In RNA-Seq analyses, the
expression levels are normalized across samples. However, for genomic DNA sequences, it
is unclear how batches affect the clustering of samples. A study by Lou et al. [70] identified
that differences in these parameters can cause bias for low-coverage sequencing:

(i) sequencing chemistry leading to the presence/absence of poly-G tails
(ii) levels of miscalibration in base quality scores

(iii) read type and read length leading to reference bias/alignment error
(iv) levels of DNA degradation
(v) sequencing depths

Quality metrics to identify batch effects aided by Principal Component Analysis (PCA)
and filters were developed by Tom et al. [71] to remove variants that cause false
associations due to batch effects. The standard method to detect a batch bias is to cluster or
perform a PCA and color the sample points by batch/data source. Bias is suspected if the
clusters coincide with the sample colors. Difficulties arise when the different batches also
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Figure 11. Phylogenetic tree colored by type (left) and dataset (right) using Pink pepper as reference.
The tree was constructed using FastTreeMP, as in Figure 8 using WGS7DS plus Pink pepper without the McKernan
et al. samples, and using Pink pepper as the reference. The trees on the left are colored by use type (red: drug;
blue: hemp). Dots indicate the reference genomes (green: cs10; red: PK; blue: FN; pink: Pink pepper). On the right,
they are colored by data source (red: Lynch 2016; blue: Woods 2022; green: Kannapedia; cyan: Ren 2021; orange:
assembly projects).

belong to different populations, making it challenging to identify if the cluster is due to the
batch or the population. This is the situation in some of the data sources used here, with an
unbalanced representation of drug or hemp-type samples. Whether the coverage here is
high enough to be less affected by the factors mentioned is unclear. Lou et al. [70] suggested
that bias can still arise for high-coverage data, especially when it comes to accurate calling
at low-frequency SNPs. However, differences in sequencing depth are unlikely to be an
issue when there is >20× coverage in all batches, but 5–20× may still cause batch effects. The
average depths for the data sources used in WGS7DS are plotted in Figure 12. Most are
below 10× coverage, suggesting that batch effects may be present.

We tried to identify which data sources were appropriate to combine. We used
chi-square statistics to test if genotype clusters are independent from data sources before
testing the dependence of a cultivar type on genotype cluster. This requires that all values
of the variable should be represented in each data source. This is usually not the case since
many studies use either all hemp or all drug-type samples, but not both. We strongly
suggest that researchers include at least a few samples of the other cannabis types, even
though their main study focuses on one type only.

Despite these limitations, genotype sequences from different sources may be merged
with caution, and tests of independence may be performed before merging. The tree
successfully separated hemp and drug types; however, there is some doubt due to the
non-uniform sample type distribution for most data sources, i.e., some sources consist
mostly of one type only. For the batch combination, where the samples show association
and the independence hypothesis cannot be rejected (PRJNA310948 and PRJNA575581 with
chi-sq p-value = 0.3 [13, 14]), the resulting tree shows that hemp and drug types are still
separate in the demonstration presented at [72]. All other batch combinations were found
to have no sample association (chi-sq p-value < 0.05).
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Figure 12. Average sequencing depth of samples from the different sources used in WGS7DS.
The values are calculated using bcftools stat -s, and the histograms are plotted separately for each source.

Incremental update of variants database and established protocols
The GATK GenomicsDB used to merge the GVCF files is a database of variants that supports
the incremental addition of samples for joint genotyping. Starting from these databases for
several reference genomes and with the pipelines created, the task of classifying new
samples and locating their place in the phylogenetic trees can be fast and robust.

The developed pipeline is a result of benchmarking GATK against Parabricks, which we
performed as part of the Australia BioCommons bioinformatics working group [73] while
generating this database [39]. As a result of benchmarking, we decided to use Parabricks on
most analyses due to its speed and service unit savings when using high-performance
computing facilities. An issue encountered when using GATK GenomicsDB, related to its
change from using a dot (.) to a 0 for representing missing alleles since GATK v4.2.3, was
identified and corrected later, as described in this blog [74].

With the wide adoption of NGS technology in cannabis research, we anticipate that more
sequencing data will be publicly available. If funding permits, we intend to periodically
reanalyze, integrate, and host these results in CannSeek.

AVAILABILITY OF SOURCE CODE AND REQUIREMENTS
The codes consist of the analysis workflow for SNP discovery and the CannSeek web server
derived from Rice SNP-Seek.

Gigabyte, 2024, DOI: 10.46471/gigabyte.135 23/28

https://doi.org/10.46471/gigabyte.135


L. Mansueto et al.

SNP discovery
• Project name: GATK-Parabricks Gadi Benchmarking
• Project home page: https://github.com/Southern-Cross-Plant-Science/GATK-

Parabricks_benchmarking_Gadi_NCI
• Operating system(s): Linux
• Programming language: bash
• Other requirements: PBS HPC job scheduler (for HPC), GATK (CPU) or Parabricks (with

GPU)
• License: GNU General Public License Version 2.0
• DOI: 10.5281/zenodo.8348884.

CannSeek web server (forked from Rice SNP-Seek)
• Project name: CannSeek
• CannSeek project home page: https://github.com/Southern-Cross-Plant-Science/CannSeek
• The startup and loading scripts are available at

https://github.com/Southern-Cross-Plant-Science/CannSeekBackend.
• Operating system(s): Linux
• Programming language: Java, R, Python
• Other requirements: Apache Tomcat, Postgres (ZK, Spring Framework for development)
• License: Mozilla Public License Version 2.0
• DOI: 10.5524/102571.

DATA AVAILABILITY
The samples and sources used to generate the SNPs database are listed in Table 1. Their NGS
sequences were downloaded from NCBI SRA, or from Kannapedia
(https://medicinalgenomics.com/kannapedia-fastq) with the accessions/URLs listed in
Samples in [44]. The cs10 CBDRx reference assembly, gene models, and sequences are from
NCBI RefSeq GCF_900626175.2. Other cannabis assemblies used from NCBI are PK (pkv5,
GCF_900626175.2), FN (fnv2, GCA_003417725.2), and Pink pepper (ppv1, GCF_029168945.1).

pkv5 and fnv2 gene predictions were generated using FINDER, as described in ICGRC
protocol [53]. The predicted gene models are in step02-pkfdv1.gff and step02-fnfdv1.gff
in [75].

These data files are available in Files in the GigaDB [44]:

• Intermediate files resulting from GigaDB Protocol 1 are ready for loading to the
CannSeek database

• CannSeek Tomcat web server Docker/podman image with compile war file, internal
paths pointing to host volumes.

• Archived directories to be mapped as Docker/podman volumes for the a. Postgres data, b.
Tomcat webapps, c. flatfile directory for HDF5 files, utility scripts, and library.

• The Postgres database populated with the genes and cs10_26TRICH SNP dataset
• HDF5 files for 26TRICH SNPs dataset.

ABBREVIATIONS
26TRICH, trichome RNA-Seq 26 samples; CBD, cannabidiol; FN, Finola; GWAS, genome-wide
association studies; IBS, Identity by State; IPK, German Genebank; MAF, minor-allele
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frequency; MDS, multidimensional scaling; NGS, next generation sequencing; PCA,
Principal Component Analysis; PK, Purple Kush; SNP, single nucleotide polymorphism; SRA,
Sequence Read Archive; THC, tetrahydrocannabinol; THCA, tetrahydrocannabinolic acid;
VI, Variation of Information; WGS7DS, whole genome sequencing-7 sources.
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