Skip to main content
Canna~Fangled Abstracts

Female reproductive tract pain: targets, challenges, and outcomes

By February 13, 2014No Comments
pm8
Logo of frontpharmacol

Front Pharmacol. 2014; 5: 17.
Published online Feb 13, 2014. doi:  10.3389/fphar.2014.00017
PMCID: PMC3923189

Female reproductive tract pain: targets, challenges, and outcomes

Abstract

Pain from the female reproductive tract (FRT) is a significant clinical problem for which there are few effective therapies. The complex neuroanatomy of pelvic organs not only makes diagnosis of pelvic pain disorders difficult but represents a challenge to development of targeted therapies. A number of potential therapeutic targets have been identified on sensory neurons supplying the FRT but our knowledge on the basic neurophysiology of these neurons is limited compared with other viscera. Until this is addressed we can only guess if the new experimental therapies proposed for somatic, gastrointestinal, or bladder pain will translate to the FRT. Once suitable therapeutic targets become clear, the next challenge is drug delivery. The FRT represents a promising system for topical drug delivery that could be tailored to act locally or systemically depending on formulation. Development of these therapies and their delivery systems will need to be done in concert with more robust in vivo and in vitro models of FRT pain.

Keywords: pelvic pain, vagina, cervix, uterus, drug delivery

INTRODUCTION

Pain syndromes represent one of the major challenges of neurology. Pain has many definitions but essentially it is a concept generated across the brain in response to internal or external stimuli that the individual associates with real or perceived tissue damage or imminent threat (Merskey and Bogduk, 1994). Pain is difficult enough to treat when it arises from a relatively straightforward injury to a defined region like a small piece of skin or a single joint. Pain from pelvic organs, particularly the reproductive tract, is notoriously difficult to treat. In this review we will examine the complex and unique innervation of the female reproductive tract (FRT), current treatments and the potential for topical therapies.

The prevalence of transient pelvic pain (usually dysmenorrhea) has been placed as high as 70–80% of women surveyed while chronic pelvic pain was reported at >20% (Hillen et al., 1999Pitts et al., 2008). Ten percent of outpatient gynecological visits are for intractable pelvic pain (Ryder, 1996), and pelvic pain is the primary reason for 12–18% of hysterectomies (Kramer and Reiter, 1997). United kingdom estimates from 2000 placed direct healthcare costs at £158 million (Stones et al., 2000) whereas 1996 data from the USA placed patients’ out of pocket expenses at $1.9 billion dollars and indirect costs due to time off work at over $500 million (Mathias et al., 1996). Importantly many women do not seek treatment for their pain (Mathias et al., 1996).

Chronic pelvic pain is further divided into “specific disease-associated pelvic pain” and “chronic pelvic pain syndrome” where the underlying pathology remains obscure (International Association for the Study of Pain, 2011). Pelvic pain may arise from a number of structures, both somatic (e.g., striated pelvic floor muscles), and visceral (reproductive tract, bladder, and lower bowel). Focusing on reproductive structures, clinical observations have identified numerous predictors of chronic pelvic pain including endometriosis, pelvic inflammatory disease, childbirth, and urinogenital atrophy following menopause (Giamberardino, 2008Lara et al., 2009Paterson et al., 2009).

THE COMPLEX NATURE OF PAIN FROM THE FRT

Sexual behavior and reproduction rely on the integration of nervous and hormonal signals to a widely distributed collection of structures. The external genitalia are essentially somatic structures and the distribution of sensory axons and their neurochemical coding are similar to cutaneous tissues (Martin-Alguacil et al., 2008Moszkowicz et al., 2011Vilimas et al., 2011). Sensory neurons innervating the hollow organs show different patterns of neurochemical expression compared with those that supply somatic structures (skin, muscle, and joints; Cervero and Laird, 2004Song et al., 2009) and marked differences in central axons termination in the spinal cord (Sugiura et al., 1989,1993).

Pain arising from the vagina, cervix, and uterus is an example of visceral nociception – or pain that comes from distension, injury, or inflammation of hollow organs (Cervero and Laird, 1999). Visceral pain is diffuse, poorly localized, often referred to other body regions, and can be accompanied by disrupted motor and autonomic reflexes (Janig and Morrison, 1986McMahon, 1997Westlund, 2000).

EXTERNAL GENITALIA

The most widely reported pain syndromes associated with external genitalia are the vulvodynias (Petersen et al., 2008Fugl-Meyer et al., 2012). These have a prevalence of around 10% in U.S studies (Harlow and Stewart, 2003Petersen et al., 2008). Most sensations from the external genitalia are transmitted via axons in the pudendal nerve (Martin-Alguacil et al., 2008Moszkowicz et al., 2011Vilimas et al., 2011Figure ​Figure11). Limited data indicate that often pain from these structures is similar to generalized somatic pain as opposed to visceral pain (Bachmann et al., 2006;Goldstein and Burrows, 2008).

FIGURE 1

Innervation of pelvic organs. Sensory axons innervating the vagina reach the spinal cord via pelvic nerves and terminate in sacral spinal cord segments (S2–S4). Axons innervating the uterus travel in the hypogastric nerves and terminate in the 

SENSATIONS FROM THE VAGINA, CERVIX AND UTERUS ENTER THE CNS AT MULTIPLE LEVELS

The walls of the FRT are innervated with sensory afferent terminals that respond to both distension and inflammatory mediators (Berkley et al., 1993bPapka and Traurig, 1993). The FRT is innervated via two main spinal nerve trunks; the hypogastric and pelvic nerves that send sensory information to a number of spinal cord segments (Figure ​Figure11Berkley et al., 1993a,bWesselmann and Lai, 1997Wesselmann, 2001Jobling et al., 20032010).

Electrical recordings from axons in rodents indicate that there is a heterogeneous distribution of receptors. Most axons respond to distension, whilst others respond to both distension and chemical stimuli (e.g., bradykinin or serotonin; Berkley et al., 1993a,b). Compared with the FRT, sensory axons supplying the gastrointestinal tract (GIT) and bladder have been better studied. Five functional classes of sensory axons have been described in the GIT (Page et al., 2002Brierley et al., 2004Song et al., 2009) and four functional classes of bladder sensory axons have been identified (Zagorodnyuk et al., 2007). There is an extensive interaction between vagina, cervix, uterus, and somatic structures (Hotta et al., 1999) where there is considerable convergence of these pathways in the spinal cord. The most widely and long-recognized consequence of this convergence is referred pain (Head, 1893).

CENTRAL SENSITIZATION “PELVIC PAIN WITHOUT PELVIC ORGANS”

A significant barrier to treatment is the observation that pelvic pain can exist in the absence of any obvious pathology. In fact pelvic pain is often resistant to the removal of the allegedly offending organs (Baskin and Tanagho, 1992). This observation is thought to be caused by the phenomenon of central sensitization. The mechanisms underlying central sensitization for somatic afferents have been examined in detail (Millan, 1999Jones and Sorkin, 2003Lu et al., 2009), however, central sensitization from FRT afferents remain poorly understood. Inflammation of the rat uterus increased receptive field size, and decreased thresholds for cervix afferents (Berkley et al., 1993a). Another study has shown that FRT inflammation recruits large numbers of neurons in the dorsal horn (Wesselmann et al., 2000).

PELVIC ORGAN CROSSTALK – LINKING VAGINA, CERVIX, UTERUS BLADDER, AND BOWEL

Epidemiological data suggest strong comorbidity between inflammatory bowel disorders, interstitial cystitis, and pelvic pain (Whorwell et al., 1986). Some of this comorbidity might be explained by the sensory and motor pathways that link FRT, bladder, and lower bowel (Winnard et al., 2006;Klumpp and Rudick, 2008). Sensations from these organs share synaptic circuits in the spinal cord (Wyndaele et al., 2013) and may even share individual sensory neurons (Figure ​Figure11Christianson et al., 2007). These functional and anatomical interactions have implications for the effectiveness of local topical therapies designed to act on one organ only.

OVARIAN HORMONES ALTER SENSORY INNERVATION AND PAIN THRESHOLDS

Fluctuations in levels of ovarian hormones, particularly estrogen, are associated with changes in sensation, including pain, in a variety of tissues (Martin, 2009). This effect of estrogen on pain responses is no doubt due to the widespread expression of estrogen receptors which are located, not only in the FRT, but also on primary sensory neurons, spinal cord neurons, and higher brain centers (Papka et al., 2001Papka and Mowa, 2003Vanderhorst et al., 2009Takanami et al., 2010). Notably, estrogen receptors are particularly concentrated in sacral spinal cord segments that are crucial to the control of pelvic organs (Vanderhorst et al., 2009). The role of estrogen in modulation of the nervous system is unclear (Balthazart and Ball, 2006). Estrogen can influence several receptors and ion channels in peripheral, spinal and supraspinal pathways. For example transient receptor potential (TRP) channels on primary afferent neurons are inhibited by activation of the beta subtype estrogen receptor (ERβ; Xu et al., 2008).

OVARIAN HORMONE WITHDRAWAL ALTERS FRT AND CUTANEOUS SENSITIVITY

In humans menopause is associated with a drastic decrease in levels of ovarian hormones (Martin, 2009). With this altered hormonal status many women have increased pain from the FRT, especially the vagina, and some somatic tissues (Fillingim and Edwards, 2001Samsioe, 2007;Martin, 2009). This post-menopausal vaginal hyperalgesia, typically presents as pain during intercourse (dyspareunia; Davis et al., 2005Mac Bride et al., 2010). Various explanations have been proposed including vaginal atrophy (Forsberg, 1995). However the severity of pain is only loosely correlated with vaginal wall thickness (Kao et al., 2008), suggesting other factors are critical in this condition. Many of the painful urinogenital symptoms can be reversed by conventional systemic estrogen replacement although an increasing alternative is the use of local intravaginal estrogen replacement (Mac Bride et al., 2010).

PERIPHERAL THERAPEUTIC TARGETS

Precise information about the nature of primary sensory afferent endings in uterus, cervix, and vagina is scant compared with somatic (Woolf and Ma, 2007) or other visceral targets (Blackshaw et al., 2007). Anatomical data from animals (Papka et al., 198519951999Shew et al., 1991Collins et al., 2002) and, rarely, humans (Fried et al., 1990Bokor et al., 2009Malvasi et al., 2010) suggest they express the same neurochemical markers and receptors as nearby viscera, e.g., bladder and bowel.

OPIOIDS

Enkephalin immunoreactive axons in uterus and vagina have been reported in some mammals (Lakomy et al., 1994Skobowiat et al., 2009), while mu and delta opioid receptors are present in human and mouse myometrium (Zhu and Pintar, 1998Fanning et al., 2013). Functional measures of peripheral opioid receptor activation are not well documented for FRT afferents. However in GIT (Armstrong et al., 2005Page et al., 2008) and bladder (Su et al., 1997) mechanosensitive sensory axons are modulated by opioid receptor agonists.

TRP CHANNELS

The TRP family of channels have been a focus of somatic pain research for some time. TRPV1 channels are present on presumed nociceptive axons in rat vagina (Liao and Smith, 2011) and human cervix (Tingåker et al., 2008). Interestingly these have been proposed to underlie some of the adverse side effects of clotrimazole, an anti-mycotic agent (Meseguer et al., 2008). Furthermore estrogen amplifies pain evoked by uterine distension, via a TRPV1 receptor dependent mechanism (Yan et al., 2007). Information on other TRP channels (e.g., TRPM8 and TRPA1) is limited in the FRT although they are expressed on sensory nerves supplying the GIT (Blackshaw et al., 2010).

TROPHIC FACTORS

Various growth factors particularly nerve growth factor (NGF) and members of the glial cell line-derived neurotrophic factor family of ligands are implicated not only in survival of some sensory neurons but their receptors have been suggested as targets for alleviating neuropathic pain (Koltzenburg et al., 1999Boucher et al., 2000Malin et al., 2006Malin and Davis, 2008). Within the FRT NGF has been reported in the uterus (Lobos et al., 2005) and cervix (Chalar et al., 2003) and neurturin mRNA has been found in uterus (Widenfalk et al., 2000). Sensory neurons innervating the uterus were shown to express tyrosine receptor kinase A receptors (Chalar et al., 2003). Whether growth factors or their receptors modulate sensory afferent neurons from the FRT is unknown although they are implicated in bladder signaling (Klinger and Vizzard, 2008;Schnegelsberg et al., 2010).

P2X RECEPTORS

ATP was implicated in pain signaling nearly four decades ago (Bleehen and Keele, 1977). The subsequent discovery of P2X receptors on sensory nerves (Cook et al., 1997) had led to much work on identifying subtypes of P2X receptors as therapeutic targets (North and Jarvis, 2013). Detailed studies of the FRT are lacking however P2X receptors have been identified on both uterine and cervical sensory axons (Papka et al., 2005).

METABOTROPIC GLUTAMATE RECEPTORS (mGluRs)

mGluR have been implicated in uterine and cervix sensory signaling (Ghosh et al., 2007) where they may modulate sensory discharge during parturition. Within the GIT peripheral mGluR on sensory endings modulate excitability (Page et al., 2005) where they have been proposed as therapeutic targets (Blackshaw et al., 2011).

ACID SENSING ION CHANNELS (ASICs)

No studies to date have tested whether ASIC are expressed on sensory neurons innervating the FRT. However, they are expressed in vagal (Page et al., 2007) and colonic (Jones et al., 2005) sensory neurons where they represent a potential therapeutic target.

NITRIC OXIDE

Nitric oxide generated by neuronal, inducible or endothelial nitric oxide synthase (NOS) plays many roles in the FRT. It is most notably released by autonomic vasodilator neurons to dramatically increase blood flow (Morris et al., 2005). However nNOS is also expressed in a subpopulation of sensory nerves (Papka et al., 1995). The role of nNOS in sensory signaling in the reproductive tract is unknown. However a role for pain modulation has been proposed in somatic pain models (Boettger et al., 2007Keilhoff et al., 2013) and therapeutic agents that target nNOS have been proposed (Mladenova et al., 2012).

CANNABINOIDS

The cannabinoid signaling pathways have long been proposed as therapeutic targets (Roques et al., 2012). The FRT has some of the highest levels of endogenous cannabinoids (Schmid et al., 1997) and cannabinoid receptors are expressed in human and rodent myometrium (Das et al., 1995;Dennedy et al., 2004) where they act on smooth muscle. Cannabinoid receptors on sensory axons associated with the FRT have not been reported. However activation of cannabinoid type 1 receptors modulates sensory afferent signaling from the urinary bladder (Walczak et al., 2009) and jejunum (Yuce et al., 2010).

CURRENT THERAPIES FOR FRT PAIN

Currently evidence based treatment for FRT pain is limited. Standard pain therapies such as paracetamol, non-steroidal anti-inflammatory drugs (NSAIDs), opioids, or neuropathic pain therapies have been used, as the type of pain is not well defined and directing treatment is difficult. Topical therapies are increasing as options for treating vulvar and vaginal pain and are recommended as first line treatment (Nunns et al., 2010). Topical therapy presents an attractive alternative to systemic therapy as they are generally well tolerated and are associated with less systemic adverse effects. However, some topical therapies may cause irritation that can worsen symptoms (Nunns et al., 2010). Currently, due to a lack of evidence of effectiveness, all topical therapies used in this condition would be considered experimental (Andrews, 2011). Topical treatments have also been associated with a high placebo response (Nunns et al., 2010).

Vulvodynia and vestibulodynia treatment has been the subject of several recent reviews, which concluded there was insufficient evidence of effectiveness and safety for a range of therapies. It was determined there was evidence of a lack of efficacy for botulinum toxin injection, topical 5% xylocaine, and topical nifedipine. There was insufficient evidence to evaluate the effectiveness of steroid, local anesthetic injections, nerve blocks, intramuscular or intralesional interferon or topical capsaicin, montelukast, steroids, gabapentin, and ketoconazole (Andrews, 2011). Oral treatments that include tricyclic antidepressants, serotonin–norepinephrine uptake inhibitors and anticonvulsants (Cox and Neville, 2012) lack good quality evidence of effectiveness and have systemic adverse effects. Physical and alternative therapies are also used but there are only anecdotal reports of effectiveness (Andrews, 2011Cox and Neville, 2012). Surgery has also been used effectively to treat vulvar vestibular pain (Nunns et al., 2010Andrews, 2011Cox and Neville, 2012). Estrogen therapies are effective in patients where the pain is linked to low estrogen levels following menopause or breast cancer treatment (Goetsch, 2012). Less common therapeutic options that have shown success in small clinical trials include cutaneous fibroblast lysate cream (Donders and Bellen, 2012), nitroglycerin cream (Walsh et al., 2002), and amitriptyline-baclofen cream (Nyirjesy et al., 2009).

Treatment of uterine pain is limited to systemic options with little evidence. Dysmenorrhea is the best-studied uterine pain syndrome. Primary dysmenorrhea is treated with simple analgesics, usually naproxen, while secondary dysmenorrhea treatment relies on removal of the underlying cause of the pain (Kohle and Deb, 2011). As other pelvic organs can cause pelvic pain a thorough investigation is important. Non-pharmacological therapies including nutrition and lifestyle changes, along with surgery may play a role. Further investigation is needed to determine the most appropriate treatments for uterine pain.

Further investigation is needed to determine specific targets for pharmacological management of the various FRT pain sub-types. The use of drug delivery systems may be required to effectively deliver existing or experimental compounds to the target site for improved efficacy and/or to reduce systemic adverse effects.

DELIVERING THERAPIES TO THE FRT

The intravaginal route of drug administration has been studied as a suitable site for local and systemic delivery of therapeutic agents. The degree to which therapies act locally or systemically is formulation dependent. Presently intravaginal therapies are typically prescribed for vaginal infections and vaginal dryness. Systemic drug delivery includes uterine targeting or treatment of migraines (Bassi and Kaur, 2012). In relation to pain stemming from the FRT, the intravaginal route shows promise for the local or systemic delivery of analgesic and anti-inflammatory agents.

The vagina has unique features that can be exploited for optimal therapeutic responses, such as the presence of a dense network of blood vessels, large surface area, and permeability (Srikrishna and Cardozo, 2013). In addition, unlike conventional oral therapy, the vaginal route avoids hepatic first-pass metabolism, significant enzymatic degradation of active ingredients and drug interactions (Bassi and Kaur, 2012). Absorption from vaginal delivery systems occurs by dissolution, followed by penetration of drug through the vaginal membrane to reach the systemic circulation (Hussain and Ahsan, 2005). Physiological factors can affect the drug release from intravaginal delivery systems and/or vaginal absorption of drugs, such as cyclic changes in thickness of the vaginal epithelium, fluid volume and composition, pH and sexual arousal (Hussain and Ahsan, 2005das Neves et al., 2011). Although physiological factors are difficult to alter, the physicochemical properties of a drug compound (e.g., molecular weight, lipophilicity, ionization, surface charge, chemical nature;Hussain and Ahsan, 2005) as well as the formulation can be selected to regulate local versus systemic activity.

Despite its therapeutic potential, vaginal preparations show low patient acceptability due to factors including multiple daily dosing; leakage and messiness following application; and the need for night-time dosing. The effectiveness of commonly available vaginal dosage forms (creams, gels, solutions, foams, pessaries) is often limited by their low retention to the vaginal epithelium (Pavelić et al., 2004). In order to overcome these limitations, novel vaginal delivery systems are being developed that possess desirable distribution, bioadhesion, and release properties – such as vaginal rings, bioadhesive delivery systems, and nanosystems.

VAGINAL RINGS

Intravaginal rings (IVRs) are circular drug delivery devices that are designed to provide both sustained and controlled drug release, lasting for several weeks to several months following insertion into the vagina. IVR have been shown to be effective in delivering a multitude of compounds, such as contraceptive steroids and steroids for the treatment of post-menopausal atrophy. This delivery device has been previously reviewed (Baloglu et al., 2009Thurman et al., 2013Srikrishna and Cardozo, 2013).

BIOADHESIVE DRUG DELIVERY (BDD) SYSTEMS

BDD systems were developed to circumvent the issues associated with conventional vaginal formulations, by adhering to the vaginal mucosal tissue and prolonging the residence time of the formulation. Vaginal BDD systems have been exploited for both local as well as systemic delivery of drugs (Merabet et al., 2005Bassi and Kaur, 2012). Several studies have focused on BDD systems in the form of tablets, films, patches, and gels for the vaginal mucosal route that are composed of bioadhesive polymers that are biocompatible, biodegradable and stable. Common mucoadhesive polymers include tragacanth (acacia), carbopol resins, sodium alginate, carboxymethylcellulose, and chitosan. Vaginal BDD systems have been previously reviewed (Baloglu et al., 2009Bassi and Kaur, 2012).

NANOSYSTEMS

Nanocarriers [e.g., dendrimers, liposomes, Poly(lactic-co-glycolic acid) nanoparticles, silver and gold nanoparticles] have been utilized in topical drug delivery to enhance the penetration of drug compounds. For example, encapsulation of drugs within liposomes can provide characteristics such as enhanced skin or mucosal permeability, sustained release as well as controlled release (Pavelić et al., 2004). Such nanosystems are usually incorporated within a bioadhesive base (e.g., Carbopol resin) to enhance the viscosity of the formulation for retention on the mucosal surface (Pavelić et al., 2004das Neves et al., 2011). The use of nanosystems is promising for intravaginal drug delivery, however, similar to BDD systems, the interaction of these formulations with mucosal fluids present in the vagina at different stages of the menstrual cycle and age is not yet well defined (Bassi and Kaur, 2012).

CONCLUSION

Pain attributed to the FRT is complex and involves several classes of nociceptive and non-nociceptive sensory neurons. The unique neural anatomy of pelvic organs provides challenges in the delivery of selective therapies. There is little evidence that current treatments are effective and new strategies need to be developed. Relative to somatic pain, or pain from the GIT, there is a lack of information on the basic neurophysiology of FRT sensory neurons. Well defined animal models of neuropathic or inflammatory pain exist for somatic structures (e.g., chronic constriction injury models) and to some extent colitis (trinitrobenzene sulfonic acid models). At present there is no consistent approach to FRT pain. This will need to be addressed if we are to explore the many potential therapeutic targets present on FRT sensory neurons. Exciting opportunities exist for development of intravaginal drug delivery systems for either local or systemic drug delivery. Similar targeted delivery systems can be developed for the vulvodynias. Finally larger clinical trials of the few currently available promising therapies could provide useful insights in directing preclinical studies.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We would like to thank Kelly Smith for her artwork and Jessica Madden for editing the manuscript.

REFERENCES

  • Andrews J. C. (2011). Vulvodynia interventions–systematic review and evidence grading.Obstet. Gynecol. Surv. 66 299–315.10.1097/OGX.0b013e3182277fb7 [PubMed] [Cross Ref]
  • Armstrong D. S., Arvieux J., Asaturyan R., Averett T., Bailey S. L., Batigne G., et al. (2005).Strange-quark contributions to parity-violating asymmetries in the forward g0 electron-proton scattering experiment. Phys. Rev. Lett. 95 092001.10.1103/PhysRevLett.95.092001[PubMed] [Cross Ref]
  • Bachmann G. A., Rosen R., Pinn V. W., Utian W. H., Ayers C., Basson R. (2006).Vulvodynia: a state-of-the-art consensus on definitions, diagnosis and management. J. Reprod. Med. 51 447–456. [PubMed]
  • Baloglu E., Senyigit Z. A., Karavana S. Y, Bernkop-Schnürch A. (2009). Strategies to prolong the intravaginal residence time of drug delivery systems. J. Pharm. Pharmaceut. Sci. 12 312–336. [PubMed]
  • Balthazart J., Ball G. F. (2006). Is brain estradiol a hormone or a neurotransmitter? Trends Neurosci. 29 241–249.10.1016/j.tins.2006.03.004 [PubMed] [Cross Ref]
  • Baskin L. S., Tanagho E. A. (1992). Pelvic pain without pelvic organs. J. Urol. 147 683–686.[PubMed]
  • Bassi P., Kaur G. (2012). Innovations in bioadhesive vaginal drug delivery system. Expert. Opin. Ther. Pat. 22 1019–1032.10.1517/13543776.2012.714369 [PubMed] [Cross Ref]
  • Berkley K. J., Hubscher C. H., Wall P. D. (1993a). Neuronal responses to stimulation of the cervix, uterus, colon, and skin in the rat spinal cord. J. Neurophysiol. 69 545–556.[PubMed]
  • Berkley K. J., Robbins A., Sato Y. (1993b). Functional differences between afferent fibers in the hypogastric and pelvic nerves innervating female reproductive organs in the rat. J. Neurophysiol. 69 533–544. [PubMed]
  • Blackshaw L. A., Brierley S. M., Hughes P. A. (2010). TRP channels: new targets for visceral pain. Gut 59 126–135.10.1136/gut.2009.179523 [PubMed] [Cross Ref]
  • Blackshaw L. A., Brookes S. J., Grundy D., Schemann M. (2007). Sensory transmission in the gastrointestinal tract. Neurogastroenterol. Motil. 19 1–19.10.1111/j.1365-2982.2006.00871.x [PubMed] [Cross Ref]
  • Blackshaw L. A., Page A. J., Young R. L. (2011). Metabotropic glutamate receptors as novel therapeutic targets on visceral sensory pathways. Front. Neurosci.5:40.10.3389/fnins.2011.00040 [PMC free article] [PubMed] [Cross Ref]
  • Bleehen T., Keele C. A. (1977). Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3 367–377.10.1016/0304-3959(77)90066-5 [PubMed] [Cross Ref]
  • Boettger M. K., Uceyler N., Zelenka M., Schmitt A., Reif A., Chen Y., et al. (2007).Differences in inflammatory pain in nNOS-, iNOS- and eNOS-deficient mice. Eur. J. Pain11 810–818.10.1016/j.ejpain.2006.12.008 [PubMed] [Cross Ref]
  • Bokor A., Kyama C. M., Vercruysse L., Fassbender A., Gevaert O., Vodolazkaia A., et al. (2009). Density of small diameter sensory nerve fibres in endometrium: a semi-invasive diagnostic test for minimal to mild endometriosis. Hum. Reprod. 24 3025–3032.10.1093/humrep/dep283 [PubMed] [Cross Ref]
  • Boucher T. J., Okuse K., Bennett D. L., Munson J. B., Wood J. N., McMahon S. B. (2000).Potent analgesic effects of GDNF in neuropathic pain states. Science 290 124–127.10.1126/science.290.5489.124 [PubMed] [Cross Ref]
  • Brierley S. M., Jones R. C., III, Gebhart G. F., Blackshaw L. A. (2004). Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice.Gastroenterology 127 166–178.10.1053/j.gastro.2004.04.008 [PubMed] [Cross Ref]
  • Cervero F., Laird J. M. (1999). Visceral pain. Lancet 353 2145–2148.10.1016/S0140-6736(99)01306-9 [PubMed] [Cross Ref]
  • Cervero F., Laird J. M. (2004). Understanding the signaling and transmission of visceral nociceptive events. J. Neurobiol. 61 45–54.10.1002/neu.20084 [PubMed] [Cross Ref]
  • Chalar C., Richeri A., Viettro L., Chavez-Genaro R., Bianchimano P., Marmol N. M., et al. (2003). Plasticity in developing rat uterine sensory nerves: the role of NGF and TrkA. Cell Tissue Res. 314 191–205.10.1007/s00441-003-0799-9 [PubMed] [Cross Ref]
  • Christianson J. A., Liang R., Ustinova E. E., Davis B. M., Fraser M. O., Pezzone M. A. (2007). Convergence of bladder and colon sensory innervation occurs at the primary afferent level. Pain 128 235–243.10.1016/j.pain.2006.09.023 [PMC free article] [PubMed][Cross Ref]
  • Collins J. J., Usip S., McCarson K. E., Papka R. E. (2002). Sensory nerves and neuropeptides in uterine cervical ripening. Peptides 23 167–183.10.1016/S0196-9781(01)00593-9 [PubMed] [Cross Ref]
  • Cook S. P., Vulchanova L., Hargreaves K. M., Elde R., McCleskey E. W. (1997). Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387 505–508.10.1038/387505a0 [PubMed] [Cross Ref]
  • Cox K. J., Neville C. E. (2012). Assessment and management options for women with vulvodynia. J. Midwifery Womens Health 57 231–240.10.1111/j.1542-2011.2012.00162.x[PubMed] [Cross Ref]
  • das Neves J., Amiji M., Sarmento B. (2011). Mucoadhesive nanosystems for vaginal microbicide development: friend or foe? Wiley InterdiscipRev. Nanomed. Nanobiotechnol. 3 389–399.10.1002/wnan.144 [PubMed] [Cross Ref]
  • Das S. K., Paria B. C., Chakraborty I., Dey S. K. (1995). Cannabinoid ligand-receptor signaling in the mouse uterus. Proc. Natl. Acad. Sci. U.S.A. 92 4332–4336.10.1073/pnas.92.10.4332 [PMC free article] [PubMed] [Cross Ref]
  • Davis S. R., Dinatale I., Rivera-Woll L., Davison S. (2005). Postmenopausal hormone therapy: from monkey glands to transdermal patches. J. Endocrinol. 185 207–222.10.1677/joe.1.05847 [PubMed] [Cross Ref]
  • Dennedy M. C., Friel A. M., Houlihan D. D., Broderick V. M., Smith T., Morrison J. J. (2004). Cannabinoids and the human uterus during pregnancy. Am. J. Obstet. Gynecol.190 2–9; discussion 3A. [PubMed]
  • Donders G. G., Bellen G. (2012). Cream with cutaneous fibroblast lysate for the treatment of provoked vestibulodynia: a double-blind randomized placebo-controlled crossover study.J. Low. Genit. Tract Dis. 16 427–436.10.1097/LGT.0b013e31825a2274 [PubMed][Cross Ref]
  • Fanning R. A., McMorrow J. P., Campion D. P., Carey M. F, O’Connor J. J. (2013). Opioid mediated activity and expression of mu and delta opioid receptors in isolated human term non-labouring myometrium. Eur. J. Pharmacol. 698 170–177.10.1016/j.ejphar.2012.09.045 [PubMed] [Cross Ref]
  • Fillingim R. B., Edwards R. R. (2001). The association of hormone replacement therapy with experimental pain responses in postmenopausal women. Pain 92 229–234.10.1016/S0304-3959(01)00256-1 [PubMed] [Cross Ref]
  • Forsberg J. G. (1995). A morphologist’s approach to the vagina–age-related changes and estrogen sensitivity. Maturitas 22(Suppl.) S7–S15.10.1016/0378-5122(95)00957-4[PubMed] [Cross Ref]
  • Fried G., Meister B., Radestad A. (1990). Peptide-containing nerves in the human pregnant uterine cervix: an immunohistochemical study exploring the effect of RU 486 (mifepristone). Hum. Reprod. 5 870–876. [PubMed]
  • Fugl-Meyer K. S., Bohm-Starke N., Damsted Petersen C., Fugl-Meyer A., Parish S., Giraldi A. (2012). Standard operating procedures for female genital sexual pain. J. Sex. Med. 1083–93.10.1111/j.1743-6109.2012.02867.x [PubMed] [Cross Ref]
  • Ghosh C., Storey-Workley M., Usip S., Hafemeister J., Miller K. E., Papka R. E. (2007).Glutamate and metabotropic glutamate receptors associated with innervation of the uterine cervix during pregnancy: receptor antagonism inhibits c-Fos expression in rat lumbosacral spinal cord at parturition. J. Neurosci. Res. 85 1318–1335.10.1002/jnr.21225 [PubMed][Cross Ref]
  • Giamberardino M. A. (2008). Women and visceral pain: are the reproductive organs the main protagonists? Mini-review at the occasion of the “European Week Against Pain in Women 2007”. Eur. J. Pain 12 257–260.10.1016/j.ejpain.2007.11.007 [PubMed] [Cross Ref]
  • Goetsch M. F. (2012). Unprovoked vestibular burning in late estrogen-deprived menopause: a case series. J. Low. Genit. Tract Dis. 16 442–446.10.1097/LGT.0b013e31825c2d28 [PubMed] [Cross Ref]
  • Goldstein A. T., Burrows L. (2008). Vulvodynia. J. Sex. Med. 5 5–14 quiz 15.10.1111/j.1743-6109.2007.00679.x [PubMed] [Cross Ref]
  • Harlow B. L., Stewart E. G. (2003). A population-based assessment of chronic unexplained vulvar pain: have we underestimated the prevalence of vulvodynia? J. Am. Med. Womens Assoc. 58 82–88. [PubMed]
  • Head H. (1893). On disturbances of sensation with especial reference to the pain of visceral disease. Brain 16 1–133.10.1093/brain/16.1-2.1 [Cross Ref]
  • Hillen T. I., Grbavac S. L., Johnston P. J., Straton J. A., Keogh J. M. (1999). Primary dysmenorrhea in young Western Australian women: prevalence, impact, and knowledge of treatment. J. Adolesc. Health 25 40–45.10.1016/S1054-139X(98)00147-5 [PubMed][Cross Ref]
  • Hotta H., Uchida S., Shimura M., Suzuki H. (1999). Uterine contractility and blood flow are reflexively regulated by cutaneous afferent stimulation in anesthetized rats. J. Auton. Nerv. Syst. 75 23–31.10.1016/S0165-1838(98)00170-2 [PubMed] [Cross Ref]
  • Hussain A., Ahsan F. (2005). The vagina as a route for systemic drug delivery. J. Control. Release 103 301–313.10.1016/j.jconrel.2004.11.034 [PubMed] [Cross Ref]
  • International Association for the Study of Pain. (2011). Available at: http://www.iasp-pain.org/AM/Template.cfm?Section=Pain_Definitions.
  • Janig W., Morrison J. F. (1986). Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. Prog. Brain Res. 67 87–114.10.1016/S0079-6123(08)62758-2 [PubMed] [Cross Ref]
  • Jobling P., Gibbins I. L., Morris J. L. (2003). Functional organization of vasodilator neurons in pelvic ganglia of female guinea pigs: comparison with uterine motor neurons. J. Comp. Neurol. 459 223–241.10.1002/cne.10584 [PubMed] [Cross Ref]
  • Jobling P., Graham B. A., Brichta A. M., Callister R. J. (2010). Cervix stimulation evokes predominantly subthreshold synaptic responses in mouse thoracolumbar and lumbosacral superficial dorsal horn neurons. J. Sex. Med. 7 2068–2076.10.1111/j.1743-6109.2010.01768.x [PubMed] [Cross Ref]
  • Jones R. C., III, Xu L., Gebhart G. F. (2005). The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J. Neurosci. 25 10981–10989.10.1523/JNEUROSCI.0703-05.2005 [PubMed] [Cross Ref]
  • Jones T. L., Sorkin L. S. (2003). Basic neurochemistry of central sensitization. Semin. Pain Med. 1 184–194.10.1016/S1537-5897(03)00043-0 [Cross Ref]
  • Kao A., Binik Y. M., Kapuscinski A., Khalife S. (2008). Dyspareunia in postmenopausal women: a critical review. Pain Res. Manag. 13 243–254. [PMC free article] [PubMed]
  • Keilhoff G., Schroder H., Peters B., Becker A. (2013). Time-course of neuropathic pain in mice deficient in neuronal or inducible nitric oxide synthase. Neurosci. Res. 77 215–221.10.1016/j.neures.2013.08.008 [PubMed] [Cross Ref]
  • Klinger M. B., Vizzard M. A. (2008). Role of p75NTR in female rat urinary bladder with cyclophosphamide-induced cystitis. Am. J. Physiol. Renal Physiol. 295 F1778–F1789.10.1152/ajprenal.90501.2008 [PMC free article] [PubMed] [Cross Ref]
  • Klumpp D. J., Rudick C. N. (2008). Summation model of pelvic pain in interstitial cystitis.Nat. Clin. Pract. 5 494–500.10.1038/ncpuro1203 [PubMed] [Cross Ref]
  • Kohle S., Deb S. (2011). Dysmenorrhoea. Obstet. Gynaecol. Reprod. Med. 21 311–316.10.1016/j.ogrm.2011.09.006 [Cross Ref]
  • Koltzenburg M., Bennett D. L., Shelton D. L., McMahon S. B. (1999). Neutralization of endogenous NGF prevents the sensitization of nociceptors supplying inflamed skin. Eur. J. Neurosci. 11 1698–1704.10.1046/j.1460-9568.1999.00590.x [PubMed] [Cross Ref]
  • Kramer M. G., Reiter R. C. (1997). Hysterectomy: indications, alternatives and predictors.Am. Fam. Physician. 55 827–834. [PubMed]
  • Lakomy M., Happola O., Majewski M., Kaleczyc J. (1994). Immunohistochemical localization of neuropeptides in nerve fibers of the porcine vagina and uterine cervix. Folia Histochem. Cytobiol. 32 167–175. [PubMed]
  • Lara L. A., Useche B., Ferriani R. A., Reis R. M., de Sa M. F., de Freitas M. M. (2009). The effects of hypoestrogenism on the vaginal wall: interference with the normal sexual response. J. Sex. Med. 6 30–39.10.1111/j.1743-6109.2008.01052.x [PubMed] [Cross Ref]
  • Liao Z., Smith P. G. (2011). Adaptive plasticity of vaginal innervation in term pregnant rats.Reprod. Sci. 18 1237–1245.10.1177/1933719111410706 [PMC free article] [PubMed][Cross Ref]
  • Lobos E., Gebhardt C., Kluge A., Spanel-Borowski K. (2005). Expression of nerve growth factor (NGF) isoforms in the rat uterus during pregnancy: accumulation of precursor proNGF. Endocrinology 146 1922–1929.10.1210/en.2004-0925 [PubMed] [Cross Ref]
  • Lu V. B., Biggs J. E., Stebbing M. J., Balasubramanyan S., Todd K. G., Lai A. Y., et al. (2009). Brain-derived neurotrophic factor drives the changes in excitatory synaptic transmission in the rat superficial dorsal horn that follow sciatic nerve injury. J. Physiol.587 1013–1032.10.1113/jphysiol.2008.166306 [PMC free article] [PubMed] [Cross Ref]
  • Mac Bride M. B., Rhodes D. J., Shuster L. T. (2010). Vulvovaginal atrophy. Mayo Clin. Proc. 85 87–94.10.4065/mcp.2009.0413 [PMC free article] [PubMed] [Cross Ref]
  • Malin S. A., Davis B. M. (2008). Postnatal roles of glial cell line-derived neurotrophic factor family members in nociceptors plasticity. Sheng Li Xue Bao 60 571–578. [PMC free article][PubMed]
  • Malin S. A., Molliver D. C., Koerber H. R., Cornuet P., Frye R., Albers K. M., et al. (2006).Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J. Neurosci. 26 8588–8599.10.1523/JNEUROSCI.1726-06.2006 [PubMed] [Cross Ref]
  • Malvasi A., Tinelli A., Cavallotti C., Bettocchi S., Di Renzo G. C., Stark M. (2010). Substance P (SP) and vasoactive intestinal polypeptide (VIP) in the lower uterine segment in first and repeated cesarean sections. Peptides 31 2052–2059.10.1016/j.peptides.2010.07.025[PubMed] [Cross Ref]
  • Martin V. T. (2009). Ovarian hormones and pain response: a review of clinical and basic science studies. Gend. Med. 6(Suppl.2) 168–192.10.1016/j.genm.2009.03.006 [PubMed][Cross Ref]
  • Martin-Alguacil N., Schober J. M., Sengelaub D. R., Pfaff D. W., Shelley D. N. (2008).Clitoral sexual arousal: neuronal tracing study from the clitoris through the spinal tracts. J. Urol. 180 1241–1248.10.1016/j.juro.2008.06.009 [PMC free article] [PubMed] [Cross Ref]
  • Mathias S. D., Kuppermann M., Liberman R. F., Lipschutz R. C., Steege J. F. (1996).Chronic pelvic pain: prevalence, health-related quality of life, and economic correlates.Obstet. Gynecol. 87 321–327.10.1016/0029-7844(95)00458-0 [PubMed] [Cross Ref]
  • McMahon S. B. (1997). Are there fundamental differences in the peripheral mechanisms of visceral and somatic pain? Behav. Brain Sci. 20 381–391 discussion 435–513.10.1017/S0140525X97231481 [PubMed] [Cross Ref]
  • Merabet J., Thompson D, Saul Levinson R. (2005). Advancing vaginal drug delivery. Expert Opin. Drug Deliv. 2 769–777.10.1517/17425247.2.4.769 [PubMed] [Cross Ref]
  • Merskey H., Bogduk N. (1994). Classification of Chronic Pain. Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms. Seattle, WA: IASP Press.
  • Meseguer V., Karashima Y., Talavera K., D’Hoedt D., Donovan-Rodriguez T., Viana F., et al. (2008). Transient receptor potential channels in sensory neurons are targets of the antimycotic agent clotrimazole. J. Neurosci. 28 576–586.10.1523/JNEUROSCI.4772-07.2008 [PubMed] [Cross Ref]
  • Millan M. J. (1999). The induction of pain: an integrative review. Prog. Neurobiol. 57 1–164.10.1016/S0301-0082(98)00048-3 [PubMed] [Cross Ref]
  • Mladenova G., Annedi S. C., Ramnauth J., Maddaford S. P., Rakhit S., Andrews J. S., et al. (2012). First-in-class, dual-action, 3,5-disubstituted indole derivatives having human nitric oxide synthase (nNOS) and norepinephrine reuptake inhibitory (NERI) activity for the treatment of neuropathic pain. J. Med. Chem. 55 3488–3501.10.1021/jm300138g[PubMed] [Cross Ref]
  • Morris J. L., Gibbins I. L., Jobling P. (2005). Post-stimulus potentiation of transmission in pelvic ganglia enhances sympathetic dilatation of guinea-pig uterine artery in vitro. J. Physiol. 566 189–203.10.1113/jphysiol.2005.083493 [PMC free article] [PubMed][Cross Ref]
  • Moszkowicz D., Alsaid B., Bessede T., Zaitouna M., Penna C., Benoît G. (2011). Neural supply to the clitoris: immunohistochemical study with three-dimensional reconstruction of cavernous nerve, spongious nerve, and dorsal clitoris nerve in human fetus. J. Sex. Med.8 1112–1122.10.1111/j.1743-6109.2010.02182.x [PubMed] [Cross Ref]
  • North R. A., Jarvis M. F. (2013). P2X receptors as drug targets. Mol. Pharmacol. 83 759–769.10.1124/mol.112.083758 [PMC free article] [PubMed] [Cross Ref]
  • Nunns D., Mandal D., Byrne M., McLelland J., Rani R., Cullimore J., et al. (2010).Guidelines for the management of vulvodynia. Br. J. Dermatol. 162 1180–1185.10.1111/j.1365-2133.2010.09684.x [PubMed] [Cross Ref]
  • Nyirjesy P., Lev-Sagie A., Mathew L., Culhane J. F. (2009). Topical amitriptyline-baclofen cream for the treatment of provoked vestibulodynia. J. Low. Genit. Tract Dis. 13 230–236.10.1097/LGT.0b013e31819663ee [Cross Ref]
  • Page A. J., Brierley S. M., Martin C. M., Hughes P. A., Blackshaw L. A. (2007). Acid sensing ion channels 2 and 3 are required for inhibition of visceral nociceptors by benzamil. Pain133 150–160.10.1016/j.pain.2007.03.019 [PubMed] [Cross Ref]
  • Page A. J., Martin C. M., Blackshaw L. A. (2002). Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. J. Neurophysiol. 87 2095–2103.[PubMed]
  • Page A. J., O’Donnell T. A., Blackshaw L. A. (2008). Opioid modulation of ferret vagal afferent mechanosensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 294 G963–G970.10.1152/ajpgi.00562.2007 [PubMed] [Cross Ref]
  • Page A. J., Young R. L., Martin C. M., Umaerus M., O’Donnell T. A., et al. (2005).Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons.Gastroenterology 128 402–410.10.1053/j.gastro.2004.11.062 [PubMed] [Cross Ref]
  • Papka R. E., Mowa C. N. (2003). Estrogen receptors in the spinal cord, sensory ganglia, and pelvic autonomic ganglia. Int. Rev. Cytol. 231 91–127.10.1016/S0074-7696(03)31003-4[PubMed] [Cross Ref]
  • Papka R. E., Traurig H. H. (1993). “Autonomic efferent and visceral sensory innervation of the female reproductive system: special reference to neurochemical markers in nerves and ganglionic connections,” in Nervous Control of the Urogenital System ed. Maggi C., editor. (Chur: Harwood, Luxembourg: ) 423–466.
  • Papka R. E., Collins J., Copelin T., Wilson K. (1999). Calretinin-immunoreactive nerves in the uterus, pelvic autonomic ganglia, lumbosacral dorsal root ganglia and lumbosacral spinal cord. Cell Tissue Res. 298 63–74.10.1007/s004419900071 [PubMed] [Cross Ref]
  • Papka R. E., Cotton J. P., Traurig H. H. (1985). Comparative distribution of neuropeptide tyrosine-, vasoactive intestinal polypeptide-, substance P-immunoreactive, acetylcholinesterase-positive and noradrenergic nerves in the reproductive tract of the female rat. Cell Tissue Res. 242 475–490.10.1007/BF00225412 [PubMed] [Cross Ref]
  • Papka R. E., Hafemeister J., Storey-Workley M. (2005). P2X receptors in the rat uterine cervix, lumbosacral dorsal root ganglia, and spinal cord during pregnancy. Cell Tissue Res.321 35–44.10.1007/s00441-005-1114-8 [PubMed] [Cross Ref]
  • Papka R. E., McNeill D. L., Thompson D., Schmidt H. H. (1995). Nitric oxide nerves in the uterus are parasympathetic, sensory, and contain neuropeptides. Cell Tissue Res. 279 339–349.10.1007/BF00318490 [PubMed] [Cross Ref]
  • Papka R. E., Storey-Workley M., Shughrue P. J., Merchenthaler I., Collins J. J., Usip S., et al. (2001). Estrogen receptor-alpha and beta- immunoreactivity and mRNA in neurons of sensory and autonomic ganglia and spinal cord. Cell Tissue Res. 304 193–214.10.1007/s004410100363 [PubMed] [Cross Ref]
  • Paterson L. Q., Davis S. N., Khalife S., Amsel R., Binik Y. M. (2009). Persistent genital and pelvic pain after childbirth. J. Sex. Med. 6 215–221.10.1111/j.1743-6109.2008.01063.x[PubMed] [Cross Ref]
  • Pavelić Z., Skalko-Basnet N., Schubert R., Jalsenjak I. (2004). Liposomal gels for vaginal drug delivery. Methods Enzymol. 387 287–299.10.1016/S0076-6879(04)87018-6[PubMed] [Cross Ref]
  • Petersen C. D., Lundvall L., Kristensen E., Giraldi A. (2008). Vulvodynia. Definition, diagnosis and treatment. Acta obstet. Gynecol. Scand. 87 893–901.10.1080/00016340802323321 [PubMed] [Cross Ref]
  • Pitts M. K., Ferris J. A., Smith A. M., Shelley J. M., Richters J. (2008). Prevalence and correlates of three types of pelvic pain in a nationally representative sample of Australian women. Med. J. Aust. 189 138–143. [PubMed]
  • Roques B. P., Fournie-Zaluski M. C., Wurm M. (2012). Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat. Rev. Drug Discov. 11 292–310.10.1038/nrd3673 [PubMed] [Cross Ref]
  • Ryder R. M. (1996). Chronic pelvic pain. Am. Fam. Physician. 54 2225–2232 2237.[PubMed]
  • Samsioe G. (2007). “Urogenital symptoms around the menopause and beyond,” inTreatment of the Postmenopausal Woman ed. Lobo R. A., editor. (Burlington: Elsevier)
  • Schmid P. C., Paria B. C., Krebsbach R. J., Schmid H. H., Dey S. K. (1997). Changes in anandamide levels in mouse uterus are associated with uterine receptivity for embryo implantation. Proc. Natl. Acad. Sci. U.S.A. 94 4188–4192. [PMC free article] [PubMed]
  • Schnegelsberg B., Sun T. T., Cain G., Bhattacharya A., Nunn P. A., Ford A. P., et al. (2010).Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298 R534–R547.10.1152/ajpregu.00367.2009 [PMC free article] [PubMed][Cross Ref]
  • Shew R. L., Papka R. E., McNeill D. L. (1991). Substance P and calcitonin gene-related peptide immunoreactivity in nerves of the rat uterus: localization, colocalization and effects on uterine contractility. Peptides 12 593–600.10.1016/0196-9781(91)90107-Z [PubMed][Cross Ref]
  • Skobowiat C., Gonkowski S., Janiuk I., Calka J., Majewski M. (2009). The relationship and co-localization of vasoactive intestinal peptide (VIP)- and Leu5-enkephalin (LENK)-immunoreactivity in the female genital tract of the pig. Pol. J. Vet. Sci. 12 347–353.[PubMed]
  • Song X., Chen B. N., Zagorodnyuk V. P., Lynn P. A., Blackshaw L. A., Grundy D., et al. (2009). Identification of medium/high-threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract. Gastroenterology 137 274–284284.e1.10.1053/j.gastro.2009.02.061 [PMC free article] [PubMed] [Cross Ref]
  • Srikrishna S., Cardozo L. (2013). The vagina as a route for drug delivery: a review. Int. Urogynecol. J. 24 537–543.10.1007/s00192-012-2009-3 [PubMed] [Cross Ref]
  • Stones R. W., Selfe S. A., Fransman S., Horn S. A. (2000). Psychosocial and economic impact of chronic pelvic pain. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 14 415–431.10.1053/beog.1999.0084 [PubMed] [Cross Ref]
  • Su X., Sengupta J. N., Gebhart G. F. (1997). Effects of opioids on mechanosensitive pelvic nerve afferent fibers innervating the urinary bladder of the rat. J. Neurophysiol. 77 1566–1580. [PubMed]
  • Sugiura Y., Terui N., Hosoya Y. (1989). Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers. J. Neurophysiol. 62834–840. [PubMed]
  • Sugiura Y., Terui N., Hosoya Y., Tonosaki Y., Nishiyama K., Honda T. (1993). Quantitative analysis of central terminal projections of visceral and somatic unmyelinated (C) primary afferent fibers in the guinea pig. J. Comp. Neurol. 332 315–325.10.1002/cne.903320305[PubMed] [Cross Ref]
  • Takanami K., Sakamoto H., Matsuda K.-I., Hosokawa K., Nishi M., Prossnitz E. R., et al. (2010). Expression of G protein-coupled receptor 30 in the spinal somatosensory system.Brain Res. 1310 17–28.10.1016/j.brainres.2009.11.004 [PubMed] [Cross Ref]
  • Thurman A. R., Clark M. R., Hurlburt J. A., Doncel G. F. (2013). Intravaginal rings as delivery systems for microbicides and multipurpose prevention technologies. Int. J. Womens Health 5 695–708.10.2147/IJWH.S34030 [PMC free article] [PubMed] [Cross Ref]
  • Tingåker B. K., Ekman-Ordeberg G., Facer P., Irestedt L., Anand P. (2008). Influence of pregnancy and labor on the occurrence of nerve fibers expressing the capsaicin receptor TRPV1 in human corpus and cervix uteri. Reprod. Biol. Endocrinol. 6:8.10.1186/1477-7827-6-8 [PMC free article] [PubMed] [Cross Ref]
  • Vanderhorst V. G. J. M., Terasawa E., Ralston H. J. (2009). Estrogen receptor-alpha immunoreactive neurons in the brainstem and spinal cord of the female rhesus monkey: species-specific characteristics. Neuroscience 158 798–810.10.1016/j.neuroscience.2008.10.017 [PubMed] [Cross Ref]
  • Vilimas P. I., Yuan S. Y., Haberberger R. V., Gibbins I. L. (2011). Sensory innervation of the external genital tract of female guinea pigs and mice. J. Sex. Med. 8 1985–1995.10.1111/j.1743-6109.2011.02258.x [PubMed] [Cross Ref]
  • Walczak J. S., Price T. J., Cervero F. (2009). Cannabinoid CB1 receptors are expressed in the mouse urinary bladder and their activation modulates afferent bladder activity.Neuroscience 159 1154–1163.10.1016/j.neuroscience.2009.01.050 [PubMed] [Cross Ref]
  • Walsh K. E., Berman J. R., Berman L. A., Vierregger K. (2002). Safety and efficacy of topical nitroglycerin for treatment of vulvar pain in women with vulvodynia: a pilot study.J. Gend. Specif. Med. 5 21–27. [PubMed]
  • Wesselmann U. (2001). Neurogenic inflammation and chronic pelvic pain. World J. Urol.19 180–185.10.1007/s003450100201 [PubMed] [Cross Ref]
  • Wesselmann U., Lai J. (1997). Mechanisms of referred visceral pain: uterine inflammation in the adult virgin rat results in neurogenic plasma extravasation in the skin. Pain 73 309–317.10.1016/S0304-3959(97)00112-7 [PubMed] [Cross Ref]
  • Wesselmann U., Czakanski P. P., Sanders C. (2000). Altered CNS processing of nociceptive messages from the vagina in rats, that have recovered from uterine inflammation. Prog. Pain Res. Manag. 16 581–588.
  • Westlund K. N. (2000). Visceral nociception. Curr. Rev. Pain 4 478–487.10.1007/s11916-000-0072-9 [PubMed] [Cross Ref]
  • Whorwell P. J., Lupton E. W., Erduran D., Wilson K. (1986). Bladder smooth muscle dysfunction in patients with irritable bowel syndrome. Gut 27 1014–1017.10.1136/gut.27.9.1014 [PMC free article] [PubMed] [Cross Ref]
  • Widenfalk J., Parvinen M., Lindqvist E., Olson L. (2000). Neurturin, RET, GFRalpha-1 and GFRalpha-2, but not GFRalpha-3, mRNA are expressed in mice gonads. Cell Tissue Res.299 409–415. [PubMed]
  • Winnard K. P., Dmitrieva N., Berkley K. J. (2006). Cross-organ interactions between reproductive, gastrointestinal, and urinary tracts: modulation by estrous stage and involvement of the hypogastric nerve. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291R1592–R1601.10.1152/ajpregu.00455.2006 [PubMed] [Cross Ref]
  • Woolf C. J., Ma Q. (2007). Nociceptors–noxious stimulus detectors. Neuron 55 353–364.10.1016/j.neuron.2007.07.016 [PubMed] [Cross Ref]
  • Wyndaele M., De Wachter S., De Man J., Minagawa T., Wyndaele J. J., Pelckmans P. A., et al. (2013). Mechanisms of pelvic organ crosstalk: 1. Peripheral modulation of bladder inhibition by colorectal distention in rats. J. Urol. 190 765–771.10.1016/j.juro.2013.03.045[PubMed] [Cross Ref]
  • Xu S., Cheng Y., Keast J. R., Osborne P. B. (2008). 17beta-estradiol activates estrogen receptor beta-signalling and inhibits transient receptor potential vanilloid receptor 1 activation by capsaicin in adult rat nociceptor neurons. Endocrinology 149 5540–5548.10.1210/en.2008-0278 [PMC free article] [PubMed] [Cross Ref]
  • Yan T., Liu B., Du D., Eisenach J. C., Tong C. (2007). Estrogen amplifies pain responses to uterine cervical distension in rats by altering transient receptor potential-1 function.Anesth. Analg. 104 1246–1250tables of contents.10.1213/01.ane.0000263270.39480.a2[PubMed] [Cross Ref]
  • Yuce B., Kemmer M., Qian G., Muller M., Sibaev A., Li Y., et al. (2010). Cannabinoid 1 receptors modulate intestinal sensory and motor function in rat. Neurogastroenterol. Motil. 22 672–e205.10.1111/j.1365-2982.2010.01473.x [PubMed] [Cross Ref]
  • Zagorodnyuk V. P., Gibbins I. L., Costa M., Brookes S. J., Gregory S. J. (2007). Properties of the major classes of mechanoreceptors in the guinea pig bladder. J. Physiol. 585 147–163.10.1113/jphysiol.2007.140244 [PMC free article] [PubMed] [Cross Ref]
  • Zhu Y., Pintar J. E. (1998). Expression of opioid receptors and ligands in pregnant mouse uterus and placenta. Biol. Reprod. 59 925–932.10.1095/biolreprod59.4.925 [PubMed][Cross Ref]

Articles from Frontiers in Pharmacology are provided here courtesy of Frontiers Media SA 
potp font 1