J Med Chem. 2017 Jul 20. doi: 10.1021/acs.jmedchem.7b00724.
[Epub ahead of print]
Shi Y, Duan YH, Ji YY, Wang ZL, Wu YR, Gunosewoyo H, Xie XY, Chen JZ, Yang F, Li J, Tang J, Xie X, Yu LF.
Abstract
Selective CB2 agonists represent an attractive therapeutic strategy for the treatment of a variety of diseases without psychiatric side effects mediated by the CB1 receptor. We carried out a rational optimization of a black market designer drug SDB-001 that led to the identification of potent and selective CB2 agonists. A 7-methoxy or 7-methylthio substitution at the 3-amidoalkylindoles resulted in potent CB2 antagonists (27 or 28, IC50 = 16-28 nM). Replacement of the amidoalkyls from 3-position to the 2-position of the indole ring dramatically increased the agonist selectivity on the CB2 over CB1 receptor. Particularly, compound 57 displayed a potent agonist activity on the CB2 receptor (EC50 = 114-142 nM) without observable agonist or antagonist activity on the CB1 receptor. Furthermore, 57 significantly alleviated the clinical symptoms and protected the murine central nervous system from immune damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis.
- PMID: 28726401
- DOI: 10.1021/acs.jmedchem.7b00724