2015 Apr 27. pii: 1401844. [Epub ahead of print]
Abstract
Cannabidiol (CBD) is a natural nonpsychotropic cannabinoid from marijuana (Cannabis sativa) with anti-epileptic and anti-inflammatory properties. Effect of CBD on naive immune system is not precisely understood. In this study, we observed that administering CBD into naive mice triggers robust induction of CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) in the peritoneum, which expressed functional arginase 1, and potently suppressed T cell proliferation ex vivo. Furthermore, CBD-MDSC suppressed LPS-induced acute inflammatory response upon adoptive transfer in vivo. CBD-induced suppressor cells were comprised of CD11b+Ly6-G+Ly6-C+ granulocytic and CD11b+Ly6-G-Ly6-C+ monocytic subtypes, with monocytic MDSC exhibiting higher T cell-suppressive function. Induction of MDSC by CBD was markedly attenuated in Kit-mutant (KitW/W-v) mast cell-deficient mice. MDSC response was reconstituted upon transfer of wild-type bone marrow-derived mast cells in KitW/W-v mice, suggesting the key role of cKit (CD117) as well as mast cells. Moreover, mast cell activator compound 48/80 induced significant levels of MDSC in vivo. CBD administration in mice induced G-CSF, CXCL1, and M-CSF, but not GM-CSF. G-CSF was found to play a key role in MDSC mobilization inasmuch as neutralizing G-CSF caused a significant decrease in MDSC. Lastly, CBD enhanced the transcriptional activity of peroxisome proliferator-activated receptor γ in luciferase reporter assay, and PPAR-γ selective antagonist completely inhibited MDSC induction in vivo, suggesting its critical role. Together, the results suggest that CBD may induce activation of PPAR-γ in mast cells leading to secretion of G-CSF and consequent MDSC mobilization. CBD being a major component of Cannabis, our study indicates that marijuana may modulate or dysregulate the immune system by mobilizing MDSC.
Copyright © 2015 by The American Association of Immunologists, Inc.
Copyright © 2015 by The American Association of Immunologists, Inc.
- PMID:
- 25917103
- [PubMed – as supplied by publisher]