PLoS One. 2017 Aug 31;12(8):e0183873. doi: 10.1371/journal.pone.0183873. eCollection 2017.
Luszczki JJ1,2, Patrzylas P2,3, Zagaja M2, Andres-Mach M2, Zaluska K1, Kondrat-Wrobel MW1, Szpringer M4, Chmielewski J5, Florek-Luszczki M6.
Abstract
Accumulating evidence indicates that cannabinoid CB1 receptor ligands play a pivotal role in seizures, not only in preclinical studies on animals, but also in clinical settings. This study was aimed at characterizing the influence of arachidonyl-2′-chloroethylamide (ACEA-a selective cannabinoid CB1 receptor agonist) co-administered with phenylmethylsulfonyl fluoride (PMSF) on the anticonvulsant potency of various antiepileptic drugs (clobazam, lacosamide, levetiracetam, phenobarbital, tiagabine and valproate) in the 6-Hz corneal stimulation model. Psychomotor seizures in male albino Swiss mice were evoked by a current (32 mA, 6 Hz, 3 s stimulus duration) delivered via corneal electrodes. Potential adverse effects produced by the antiepileptic drugs in combination with ACEA+PMSF were assessed using the chimney test (motor performance), passive avoidance task (remembering and acquisition of learning), and grip-strength test (muscular strength). Brain concentrations of antiepileptic drugs were measured by HPLC to exclude any pharmacokinetic contribution to the observed effect. ACEA (5 mg/kg, i.p.) + PMSF (30 mg/kg, i.p.) significantly potentiated the anticonvulsant potency of levetiracetam (P<0.05), but not that of clobazam, lacosamide, phenobarbital, tiagabine or valproate in the 6-Hz corneal stimulation model. Moreover, ACEA+PMSF did not significantly affect total brain concentrations of levetiracetam in mice. No behavioral side effects were observed in animals receiving combinations of the studied antiepileptic drugs with ACEA+PMSF. In conclusion, the combined administration of ACEA+PMSF with levetiracetam is associated with beneficial anticonvulsant pharmacodynamic interaction in the 6-Hz corneal stimulation model. The selective activation of cannabinoid CB1 receptor-mediated neurotransmission in the brain may enhance levetiracetam-related suppression of seizures in epilepsy patients, contributing to the efficacious treatment of epilepsy in future.
- PMID: 28859122
- DOI: 10.1371/journal.pone.0183873