2015 Mar 3;6:6395. doi: 10.1038/ncomms7395.
Dincheva I1, Drysdale AT2, Hartley CA2, Johnson DC2, Jing D3, King EC1, Ra S3, Gray JM4, Yang R3, DeGruccio AM5, Huang C3, Cravatt BF6, Glatt CE3, Hill MN4, Casey BJ1, Lee FS7.
Abstract
Cross-species studies enable rapid translational discovery and produce the broadest impact when both mechanism and phenotype are consistent across organisms. We developed a knock-in mouse that biologically recapitulates a common human mutation in the gene for fatty acid amide hydrolase (FAAH) (C385A; rs324420), the primary catabolic enzyme for the endocannabinoid anandamide. This common polymorphism impacts the expression and activity of FAAH, thereby increasing anandamide levels. Here, we show that the genetic knock-in mouse and human variant allele carriers exhibit parallel alterations in biochemisty, neurocircuitry and behaviour. Specifically, there is reduced FAAH expression associated with the variant allele that selectively enhances fronto-amygdala connectivity and fear extinction learning, and decreases anxiety-like behaviours. These results suggest a gain of function in fear regulation and may indicate for whom and for what anxiety symptoms FAAH inhibitors or exposure-based therapies will be most efficacious, bridging an important translational gap between the mouse and human.
- PMID:
- 25731744
- [PubMed – in process]