Canna~Fangled Abstracts

Fatty acid amide hydrolase (FAAH) inhibitor PF-3845 reduces viability, migration and invasiveness of human colon adenocarcinoma Colo-205 cell line: an in vitro study.

By August 30, 2017 No Comments
Acta Biochim Pol. 2017 Aug 30. doi: 10.18388/abp.2017_1520.
[Epub ahead of print]


PM 2 site 207Earlier reports suggest that the endocannabinoids may play a role of endogenous tumor growth modulators. In this study, we investigated whether inhibition of the enzymes involved in the synthesis and degradation of endocannabinoids may reduce colorectal cancer cell invasion and migration. The human colon adenocarcinoma Colo-205 cells were incubated with PF-3845, JZL-184 and RHC-80267 (fatty acid amide hydrolase (FAAH), mono- (MAGL) and diacylglycerol lipase (DAGL) inhibitors, respectively) for 48 h. The MTT colorimetric assay was performed to quantify cell viability. Next, Colo-205 cells were incubated with PF-3845 alone or with PF-3845 together with selected antagonists: AM 251, AM 630, SB 366791, RN 1734 and G-15 (CB1, CB2, TRPV1, TRPV4 and GPR30 antagonists, respectively). Western blot assay was applied to identify the changes in CB1 and CB2 receptor expression. Migration and invasion assays were employed to characterize the effect of PF-3845 on colorectal cancer cell invasion. We found that of all the inhibitors used, the FAAH inhibitor PF-3845 reduced the Colo-205 cell line viability the most effectively (IC50=52.55 μM). We also showed that the effect of decreased cell viability was enhanced when Colo-205 cells were incubated with PF-3845 and RN-1734, a TRPV4 antagonist (IC50=30.54 μM). Western blot assay revealed significantly decreased CB1 receptor expression levels, while CB2 expression was increased in response to PF-3845 when compared to control. Furthermore, PF-3845 inhibited migration and invasion of Colo-205 cell line. These results suggest that pharmacological inhibition of FAAH and consequent enhancement of the endocannabinoid levels may reduce the colorectal cancer growth and progression.
PMID: 28850633
DOI: 10.18388/abp.2017_1520
Free full text
twin memes II
en English