Skip to main content
Canna~Fangled Abstracts

Remote Ischemia Preconditioning Attenuates Blood-Spinal Cord Barrier Breakdown in Rats Undergoing Spinal Cord Ischemia Reperfusion Injury: Associated with Activation and Upregulation of CB1 and CB2 Receptors.

By October 31, 2017No Comments
Cell Physiol Biochem. 2017 Oct 31;43(6):2516-2524. doi: 10.1159/000484460. [Epub ahead of print]

Abstract

PM 2 site 207BACKGROUND/AIMS:

Remote ischemic preconditioning (RIPC) has protective effects on spinal cord ischemia reperfusion (I/R) injury, but the potential mechanisms remain unclear. In our study, the effects and underlying mechanisms of RIPC on blood-spinal cord barrier (BSCB) breakdown following I/R injury were investigated.

METHODS:

animals underwent intraperitoneal administration with cannabinoid-1 (CB1) receptor antagonist AM251, cannabinoid-2 (CB2) receptor antagonist AM630 or vehicle 15 minutes before three 3-minute occlusion-reperfusion cycles on the right femoral artery or a sham operation. 30 minutes after the preconditioning, aortic arch was exposed with or without 14-minute occlusion. Neurological function was assessed with Tarlov scoring system. The disruption of BSCB was assessed by measuring Evans Blue (EB) extravasation. The expression of tight junction protein occludin was determined by western blot analyses. The expression and localization of CB1 and CB2 receptors were assessed by western blot and immunofluorescence.

RESULTS:

RIPC attenuated the motor dysfunction, BSCB disruption and downregulation of occludin after I/R injury, which were impaired by blocking CB1 and CB2 receptors. Moreover, RIPC upregulated the elevated perivascular expression of CB1 and CB2 receptors following I/R injury.

CONCLUSIONS:

These results indicated that RIPC, through activation and upregulation of CB1 and CB2 receptors, was involved in preserving the integrity of BSCB after spinal cord I/R injury.

KEYWORDS:

Blood-spinal cord barrier; CB1 receptor; CB2 receptor; Ischemia reperfusion injury; Remote ischemic preconditioning

PMID: 29130941

 

DOI: 10.1159/000484460
twin memes II