Abstract
The cis-stereoisomers of Δ9-THC [(−)-3 and (+)-3] were identified and quantified in a series of low-THC-containing varieties of Cannabis sativa registered in Europe as fiber hemp and in research accessions of cannabis. While Δ9–cis-THC (3) occurs in cannabis fiber hemp in the concentration range of (−)-Δ9–trans-THC [(−)-1], it was undetectable in a sample of high-THC-containing medicinal cannabis. Natural Δ9–cis-THC (3) is scalemic (ca. 80–90% enantiomeric purity), and the absolute configuration of the major enantiomer was established as 6aS,10aR [(−)-3] by chiral chromatographic comparison with a sample available by asymmetric synthesis. The major enantiomer, (−)-Δ9–cis-THC [(−)-3], was characterized as a partial cannabinoid agonist in vitro and elicited a full tetrad response in mice at 50 mg/kg doses. The current legal discrimination between narcotic and non-narcotic cannabis varieties centers on the contents of “Δ9-THC and isomers” and needs therefore revision, or at least a more specific wording, to account for the presence of Δ9–cis-THCs [(+)-3 and (−)-3] in cannabis fiber hemp varieties.
Results and Discussion
ARTICLE SECTIONS
hemp strain | CBD (2) | Δ9–cis-THC (3) | Δ9–trans– THC (1) | trans/cis ratio | CBN (7) | CBG (8) |
---|---|---|---|---|---|---|
Beniko | 0.773 | 0.0190 | 0.0348 | 1.8 | 0.0719 | |
Bialobrzeskie | 0.766 | 0.0195 | 0.0364 | 1.9 | 0.0103 | |
Carma | 2.43 | 0.0802 | 0.104 | 1.3 | 0.125 | |
Carmagnola | 3.67 | 0.0967 | 0.158 | 1.6 | 0.0675 | |
Carmaleonte | 4.17 | 0.0115 | 0.0161 | 1.4 | 0.0183 | 1.90 |
Chamaeleon | 1.16 | 0.0311 | 0.0581 | 1.9 | 0.0208 | |
CRA_1 Eletta Campana | 2.62 | 0.0648 | 0.124 | 1.9 | 0.0214 | 0.272 |
CRA_5 Fibranova | 4.90 | 0.141 | 0.199 | 1.4 | 0.0771 | 0.398 |
Delta-Ilosa | 1.26 | 0.0349 | 0.0553 | 1.6 | 0.0114 | 2.17 |
Denise | 7.10 | 0.0153 | 0.120 | 7.8 | 0.0238 | |
Epsilon 68 | 1.123 | 0.0328 | 0.0607 | 1.9 | 0.0224 | |
Fedora 17 | 1.89 | 0.0380 | 0.0699 | 1.8 | 0.0183 | |
Felina 32 | 1.43 | 0.0366 | 0.0629 | 1.7 | 0.0248 | |
Férimon | 1.32 | 0.0280 | 0.0542 | 1.9 | 0.0116 | |
Fibrinol | 0.884 | 0.0212 | 0.0339 | 1.6 | 0.0151 | |
Finola | 1.84 | 0.0449 | 0.229 | 5.1 | 0.0937 | |
Futura 75 | 1.40 | 0.0393 | 0.0797 | 2.0 | 0.0219 | |
Ivory | 9.06 | 0.0176 | 0.0397 | 2.3 | 0.0109 | |
KC Dora | 2.16 | 0.0650 | 0.908 | 14.0 | 0.164 | |
Kompolti | 3.95 | 0.122 | 0.182 | 1.5 | 0.0602 | |
Lovrin 110 | 1.36 | 0.0343 | 0.0651 | 1.9 | 0.0146 | 0.109 |
Marcello | 2.02 | 0.0419 | 0.241 | 5.8 | 0.0483 | |
Markant | 9.57 | 0.0216 | 0.0415 | 1.9 | 0.0170 | |
Monoica | 1.41 | 0.0321 | 0.0571 | 1.8 | 0.0182 | 0.0780 |
Santhica 27 | 0.0120 | 0.000268 | 0.000400 | 1.5 | 1.35 | |
Tiborszallasi | 2.75 | 0.0673 | 0.123 | 1.8 | 0.0278 | 0.168 |
Tigra | 0.841 | 0.0213 | 0.0890 | 4.2 | 0.0219 | |
Tisza | 2.32 | 0.0501 | 0.4360 | 8.7 | 0.277 | |
Uniko B | 1.27 | 0.0254 | 1.55 | 61.0 | 0.359 | |
Uso 31 | 0.592 | 0.0115 | 0.0224 | 1.9 | 0.0679 | 0.0980 |
Zenit | 2.75 | 0.00880 | 0.0149 | 1.7 | 0.00510 |
CBD % (w/w) | (±)-Δ9–cis-THC (3) % (w/w) | (±)-Δ9–trans-THC (1) % (w/w) | trans/cis ratio | |
---|---|---|---|---|
Bedrocan | 0.16 | 22.0 | ||
Orange | 13.5 | 0.12 | 0.33 | 2.8 |
Fibranova | 3.95 | 0.11 | 0.18 | 1.6 |
Kompolti | 3.85 | 0.09 | 0.17 | 1.9 |
Futura 75 | 1.42 | 0.04 | 0.09 | 2.3 |
CB1 and CB2 receptor binding affinities in radiolabel assay with [3H]CP55940 (Ki, nM) | |||
---|---|---|---|
(−)-Δ9–trans-THC | (−)-Δ9–cis-THC | (+)-Δ9–cis-THC | |
CB1 | 22 ± 13 | 228 ± 45 | 2900 ± 421 |
CB2 | 47 ± 11 | 99 ± 29 | 4750 ± 261 |
CB1 and CB2 receptor functional activities in [35S]GTPγS binding assay (EC50, nM) | |||
---|---|---|---|
(−)-Δ9 –trans-THC | (−)-Δ9–cis-THC | (+)-Δ9 –cis-THC | |
CB1 | 43 ± 30 (partial)a | 552 ± 123 (partial)a | >10 000 |
CB2 | 12 ± 7 (partial)a | 119 ± 69 (partial)a | >10 000 |
inhibition of endocannabinoid degrading enzymes (IC50, μM) | |||
---|---|---|---|
(−)-Δ9–trans-THC | (−)-Δ9–cis-THC | (+)-Δ9–cis-THC | |
FAAH | 43.6 ± 3.5 | 36.3 ± 2.7 | >80 |
MAGL | >100 | >100 | >100 |
ABHD6 | 48.2 ± 3.0 | 39.8 ± 4.8 | 35.1 ± 4.1 |
ABHD12 | 11.6 ± 1.8 | 14.1 ± 2.6 | 28.8 ± 5.7 |
a
Partial = partial agonist compared to the full agonist CP55940.
Conclusions
ARTICLE SECTIONS
Experimental Section
ARTICLE SECTIONS
General Experimental Procedures
Plant Material
Δ9–cis-THC
Extraction
GC-MS Analysis
Achiral RP-UHPLC-HRMS Analysis
Enantioselective NP-eUHPLC Chromatographic Analysis and ICCA Application
Enantioselective SFC
CB1 and CB2 Binding Assay
[35S]GTPγS Binding Assay
Enzymatic Assays
Animals
Tetrad Test
Statistical Analysis
ARTICLE SECTIONS
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jnatprod.1c00513.
-
Mechanistic analysis of the reaction of olivetol and citral under acidic conditions; 1H NMR spectra of (−)-Δ9–trans-THC, (−)-Δ9–cis-THC, (+)-Δ9–cis-THC, and racemic Δ9–cis-THC; ultraresolution separations of a Δ9–trans-THC-rich strain (Bedrocan) and a CBD-rich strain (Orange); main cannabinoids with their mass and highlighted isobaric compounds; ethanol extracts from Futura 75; extracted-ion chromatogram; eSFC separation of (±)-Δ9–cis-THC in fiber hemp strains; eSFC traces and extracted UV chromatograms of (±)-Δ9–cis-THC separation in fiber hemp strains (PDF)
Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
ARTICLE SECTIONS
G.A. thanks MIUR for financial support to the groups in Novara (PRIN2017, Project 2017WN73PL, Bioactivity-directed exploration of the phytocannabinoid chemical space). We are grateful to Dr. Gianpaolo Grassi (Canvasalus) for the identification of all the plant material. The ETH group is grateful to the Swiss National Science Foundation for funding (2000020-172516)
References
ARTICLE SECTIONS
This article references 31 other publications.
-
Adams, R.; Pease, D. C.; Cain, C. K.; Clark, J. H. J. Am. Chem. Soc. 1940, 62, 2402– 2405, DOI: 10.1021/ja01866a040
-
Ghosh, R.; Todd, A. R.; Wright, D. C. J. Chem. Soc. 1941, 137– 140, DOI: 10.1039/jr9410000137
The article by Todd appeared seven months after the one by Adams.
-
For a review on the early studies on cannabinoids, see:Appendino, G. Rendiconti Lincei. Scienze Fisiche e Naturali 2020, 31, 919– 929, DOI: 10.1007/s12210-020-00956-0
-
Gaoni, Y.; Mechoulam, R. J. Am. Chem. Soc. 1964, 86, 1646– 1647, DOI: 10.1021/ja01062a046
-
Šantavý, F. Acta Univ. Olomuc Fac. Med. 1964, 35, 5– 9
-
Uliss, D. B.; Razdan, R. K.; Haldean, C.; Dalzell, G.; Handrick, R. Tetrahedron Lett. 1975, 16, 4369– 4372, DOI: 10.1016/S0040-4039(00)91126-2
-
Taylor, E. C.; Lenard, K.; Shvo, Y. J. Am. Chem. Soc. 1966, 88, 367– 369, DOI: 10.1021/ja00954a039
-
Razdan, R. K.; Zitko, B. A. Tetrahedron Lett. 1969, 10, 4947– 4950, DOI: 10.1016/S0040-4039(01)88854-7
-
Uliss, D. B.; Handrick, G. R.; Dalzell, H. C.; Razdan, R. K. Tetrahedron 1978, 34, 1885– 1888, DOI: 10.1016/0040-4020(78)80092-1
-
Smith, R. M.; Kempfert, K. D. Phytochemistry 1977, 16, 1088– 1089, DOI: 10.1016/S0031-9422(00)86745-X
-
WHO Expert Committee on Drug Dependence Fortieth Report. WHO Technical Report Series 1013. Geneva. Available at https://apps.who.int/iris/bitstream/handel/10665/279948/9789241210225-engl.pdf. Also DEA makes no distinction between stereoisomers of THC, only classifying positional isomers: https://www.deadiversion.usdoj.gov/schedules/orangebook/c_cs_alpha.pdf.
-
Riboulet-Zemouli, K. Drug Sci. Policy Law 2020, 6, 1– 37, DOI: 10.1177/2050324520945797
-
Edery, H.; Grunfeld, Y.; Ben-Zvi, Z.; Mechoulam, R. Ann. N. Y. Acad. Sci. 1971, 191, 40– 53, DOI: 10.1111/j.1749-6632.1971.tb13985.x
-
Martin, B. R.; Balstar, R. L.; Razdan, R. K.; Harris, L. S.; Dewey, W. L. Life Sci. 1981, 29, 565– 574, DOI: 10.1016/0024-3205(81)90434-3
-
Yagen, B.; Mechoulam, R. Tetrahedron Lett. 1969, 10, 5353– 5356, DOI: 10.1016/S0040-4039(01)88962-0
-
(a) Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2014, 53, 13898– 13901, DOI: 10.1002/anie.201408380
.
(b) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065, DOI: 10.1126/science.1237068
.
(c) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020, DOI: 10.1021/ja5003247
.
(d) Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2017, 139, 5627– 5639, DOI: 10.1021/jacs.6b13340
-
Mazzoccanti, G.; Ismail, O. H.; D’Acquarica, I.; Villani, C.; Manzo, C.; Wilcox, M.; Cavazzini, A.; Gasparrini, F. Chem. Commun. 2017, 53, 12262– 12265, DOI: 10.1039/C7CC06999E
-
(a) Badaloni, E.; Cabri, W.; Ciogli, A.; Deias, R.; Gasparrini, F.; Giorgi, F.; Vigevani, A.; Claudio Villani, C. Anal. Chem. 2007, 79, 6013– 6019, DOI: 10.1021/ac070776j
.
(b) Badaloni, E.; Cabri, W.; Ciogli, A.; D’Acquarica, I.; Deias, R.; Gasparrini, F.; Giorgi, F.; Kotoni, D.; Villani, C. J. Chromatogr A 2010, 1217, 1024– 1032, DOI: 10.1016/j.chroma.2009.10.035
-
Schurig, V. Molecules 2016, 21, 1535, DOI: 10.3390/molecules21111535
-
A most remarkable case is that of the polycyclic anticancer alkaloid cephalotaxine, in which the enantiomeric purity depends on the origin of its source plant, Cephalotaxus harringtonii (Forbes) K. Koch or C. fortunei Hook.
(a) Robin, J.-P.; Blanchard, J.; Dhal, R.; Marie, J.-P.; Radosevic, N. US2004/0186095, 2004.
(b) Huang, W.; Li, Y. X. Sci. Sin. (Engl. Ed.) 1980, 23, 835– 840
-
Novak, A. J. E.; Trauner, D. Trends Chem. 2020, 2, 1052– 1065, DOI: 10.1016/j.trechm.2020.10.005
-
Chicca, A.; Nicolussi, S.; Bartholomäus, R.; Blunder, M.; Aparisi Rey, A.; Petrucci, V.; Reynoso-Moreno, I. D. C.; Viveros-Paredes, J. M.; Dalghi Gens, M.; Lutz, B.; Schiöth, H. B.; Soeberdt, M.; Abels, C.; Charles, R. P.; Altmann, K. H.; Gertsch, J. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 5006– 5015, DOI: 10.1073/pnas.1704065114
-
Pollastro, F.; Caprioglio, D.; Del Prete, D.; Rogati, F.; Minassi, A.; Taglialatela-Scafati, O.; Muñoz, E.; Appendino, G. Nat. Prod. Commun. 2018, 13, 1189– 1194, DOI: 10.1177/1934578X1801300922
-
Chicca, A.; Schafroth, M.; Reynoso-Moreno1, A.; Erni, R.; Petrucci1, V.; Carreira, E. M.; Gertsch, J. Sci. Adv. 2018, 4, DOI: 10.1126/sciadv.aat2166 .
-
Lucas, C. J.; Galettis, P.; Schneider, J. Br. J. Clin. Pharmacol. 2018, 84, 2477– 2482, DOI: 10.1111/bcp.13710
-
(a) Gado, F.; Arena, C.; Fauci, C.; Reynoso-Moreno, I.; Bertini, S.; Digiacomo, M.; Meini, S.; Poli, G.; Macchia, M.; Tuccinardi, T.; Gertsch, J.; Chicca, A.; Manera, C. Bioorg. Chem. 2020, 17, 103353, DOI: 10.1016/j.bioorg.2019.103353
.
(b) Chicca, A.; Arena, C.; Bertini, S.; Gado, F.; Ciaglia, E.; Abate, M.; Digiacomo, M.; Lapillo, M.; Poli, G.; Bifulco, M.; Macchia, M.; Tuccinardi, T.; Gertsch, J.; Manera, C. Eur. J. Med. Chem. 2018, 154, 155– 171, DOI: 10.1016/j.ejmech.2018.05.019
.
(c) Chicca, A.; Caprioglio, D.; Minassi, A.; Petrucci, V.; Appendino, G.; Taglialatela-Scafati, O.; Gertsch, J. ACS Chem. Biol. 2014, 9, 1499– 507, DOI: 10.1021/cb500177c
-
(a) Waldman, M.; Hochhauser, E.; Fishbein, M.; Aravot, D.; Shainberg, A.; Sarne, Y. Biochem. Pharmacol. 2013, 85, 1626– 1633, DOI: 10.1016/j.bcp.2013.03.014
.
(b) Bilkei-Gorzo, O.; Albayram, A.; Draffehn, K.; Michel, A.; Piyanova, H.; Oppenheimer, M.; Dvir-Ginzberg, I.; Rácz, T.; Ulas, S.; Imbeault, I.; Bab, J. L.; Schultze, A.; Zimmer, A. Nat. Med. 2017, 23, 782– 787, DOI: 10.1038/nm.4311
-
Cook, C. E.; Seltzman, H. H.; Schindler, V. H.; Tallent, C. R.; Chin, K. M.; Pitt, C. G. NIDA Res. Monogr. 1982, 42, 19– 32
.
Due to an easier synthesis, labeled (±)11-nor-9-carboxy-cis-THC acid glucuronide is currently used as an internal standard for (+)-trans-THC acid glucuronide in forensic tests of marijuana intoxication based on liquid chromatography–mass spectrometry (LC-MS).
Grafinger, K. E.; Weinmann, W. J. J. Anal. Toxicol. 2021, 45, 291– 296, DOI: 10.1093/jat/bkaa063
This use is not recommended for immunoassay tests, but, if cis-THC is metabolized to its 11-nor-9-carboxy derivative like its trans-isomer, also the use in LC-MS becomes questionable.
-
Citti, C.; Russo, F.; Sgrò, S.; Gallo, A.; Zanotto, A.; Forni, F.; Vandelli, M. A.; Laganà, A.; Montone, C. M.; Gigli, G.; Cannazza, G. Anal. Bioanal. Chem. 2020, 412, 4009– 4022, DOI: 10.1007/s00216-020-02554-3
-
Lewis, K.; Wagner, R.; Rodriguez-Cruz, S. E.; Weaver, M. J.; Dumke, J. C. J. Forensic Sci. 2021, 66, 285– 294, DOI: 10.1111/1556-4029.14562
-