Vegetation History and Archaeobotany
Review
Abstract
Biogeographers assign the Cannabis centre of origin to “Central Asia”, mostly based on wild-type plant distribution data. We sought greater precision by adding new data: 155 fossil pollen studies (FPSs) in Asia. Many FPSs assign pollen of either Cannabis or Humulus (C–H) to collective names (e.g. Cannabis/Humulus or Cannabaceae). To dissect these aggregate data, we used ecological proxies. C–H pollen in a steppe assemblage (with Poaceae, Artemisia,Chenopodiaceae) was identified as wild-type Cannabis. C–H pollen in a forest assemblage (Alnus, Salix, Quercus, Robinia, Juglans) was identified as Humulus. C–H pollen curves that upsurged alongside crop pollen were identified as cultivated hemp. Subfossil seeds (fruits) at archaeological sites also served as evidence of cultivation. All sites were mapped using geographic information system software. The oldest C–H pollen consistent with Cannabis dated to 19.6 ago (Ma), in northwestern China. However, Cannabis and Humulus diverged 27.8 Ma, estimated by a molecular clock analysis. We bridged the temporal gap between the divergence date and the oldest pollen by mapping the earliest appearance of Artemisia. These data converge on the northeastern Tibetan Plateau, which we deduce as the Cannabis centre of origin, in the general vicinity of Qinghai Lake. This co-localizes with the first steppe community that evolved in Asia. From there, Cannabis first dispersed west (Europe by 6 Ma) then east (eastern China by 1.2 Ma). Cannabis pollen in India appeared by 32.6 thousand years (ka) ago. The earliest archaeological evidence was found in Japan, 10,000 bce, followed by China.
Keywords: Cannabis sativa, Humulus lupulus, Cannabaceae, Biogeography, Centre of origin, GIS
Notes
Supplementary material
334_2019_731_MOESM1_ESM.pdf (630 kb)
References
-
Ali JR, Aitchison JC (2008) Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166-35 Ma). Earth-Sci Rev 88:145–166CrossRefGoogle Scholar
-
Andrek HY, Balog L, Sheer MV (2010) Humulus japonicus Siebold et Zucc. (Cannabaceae)—нoвий aдвeнтивний вид флopи Укpaїни. Укp бoтaн жypн 67:438–445Google Scholar
-
Bakshi SK, Atal CK (1985) Hops in India. Council of Scientific and Industrial Research, Jammu-TawiGoogle Scholar
-
Balogh L, Dancza I (2008) Humulus japonicus, an emerging invader in Hungary. In: Tokarska-Guzik B et al (eds) Plant invasions: human perception, ecological impacts and management. Backhuys Publishers, Leiden, pp 73–79Google Scholar
-
Bande MB (1992) The Palaeogene vegetation of peninsular India (megafossil evidence). Palaeobotanist 40:275–284Google Scholar
-
Bleed P, Matsui A (2010) Why didn’t agriculture develop in Japan? A consideration of Jomon ecological style, niche construction, and the origins of domestication. J Archaeol Method Theory 17:356–370CrossRefGoogle Scholar
-
Bosboom RE, Dupont-Nivet G, Houben AJP et al (2011) Late Eocene sea retreat from the Tarim Basin and concomitant Asian paleoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol 299:385–398CrossRefGoogle Scholar
-
Bottema S, Kopaka K, Alexopoulos A (2003) The Late-Holocene vegetation history of Gavdos (Crete) in relation to long distance pollen dispersal: the Trypiti pollen diagram. In: Tonkov S (ed) Aspects of palynology and palaeoecology. Pensoft, Moscow, pp 199–212Google Scholar
-
Boutain JR (2014) On the origin of hops: genetic variability, phylogenetic relationships, and ecological plasticity of Humulus (Cannabaceae). Doctoral dissertation, University of Hawai’i, Honolulu, HIGoogle Scholar
-
Clarke RC, Merlin MD (2013) Cannabis: evolution and ethnobotany. University of California Press, BerkeleyGoogle Scholar
-
Crisci JV, Katinas L, Posadas P (2003) Historical biogeography. Harvard University Press, CambridgeGoogle Scholar
-
De Candolle AP (1883) Origine des Plantes Cultivées. Baillière, ParisGoogle Scholar
-
Dörfler W (1990) Die Geschichte des Hanfanbaus in Mitteleuropa aufgrund palynologischer Untersuchungen und von Großrestnachweisen. Prähist Z 65:218–244CrossRefGoogle Scholar
-
Dorofeev PI (1969) Mиoцeнoвaя флopa Maмoнтoвoй гopы нa Aлдaнe (Miocene Flora of the Mammoth Mountain on the Aldan). Izd-vo Akademia nauk SSSR, LeningradGoogle Scholar
-
Dorofeev PI (1982) Cannabaceae. In: Takhtajan AL (ed) Иcкoпaeмыe цвeткoвыe pacтeния Poccии и coпpeдeльныx гocyдapcтв, T. 2 (Fossil Flowering Plants of Russia and Neighboring States, Vol 2). Izd-vo Nauka, Leningrad, pp 43–48Google Scholar
-
Eom BC, Kim JW (2017) Phytocoenosen and distribution of a wild tea (Camellia sinensis(L.) Kuntze) population in South Korea. Korean J Plant Res 30:176–190CrossRefGoogle Scholar
-
Friedrich PA (1883a) “Cannabis oligocaenica nov. spec.”, Beiträge zur Kenntnis der Tertiärflora der Provinz Sachsen. Schropp, Berlin, pp 165–166Google Scholar
-
Friedrich PA (1883b) Atlas zu den Abhandlungen zur geologischen Specialkarte von Preussen den Thüringischen Staaten, Band IV, Heft 3. Schropp, BerlinGoogle Scholar
-
Fries M (1958) Vegetationsutveckling och odlingshistoria i Varnhemstrakten: en pollenanalytisk undersökning i Västergötland. Acta Phytogeogr Suec 39:1–63Google Scholar
-
Fröman I (1939) Die Hölzer des Rades und der Hopfenfund. In: von Post L, Oldeberg A, Fröman I (eds) Ein eisenzeitliches Rad aus dem Filaren-See in Södermanland, Schweden. Wahlström & Widstrand, Stockholm, pp 89–98Google Scholar
-
Gray A (1859) Diagnostic characters of new species of phanerogamous plants collected in Japan by Charles Wright, Botanist of the U.S. North Pacific Exploring Expedition. With observation upon the relations of the Japanese flora of that of North America. Mem Am Acad Arts Sci 6:377–453Google Scholar
-
Hämeen-Anttila J (2006) The last pagans of Iraq: Ibn Wahshīyah and his Nabatean Agriculture. Brill, LeidenGoogle Scholar
-
Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot 91:966–975CrossRefGoogle Scholar
-
Hohmann N, Wolf EM, Rigault P et al (2018) Ginkgo biloba’s footprint of dynamic Pleistocene history dates back only 390,000 years. BMC Genomics 19:2999Google Scholar
-
Hooker JD (1890) The Flora of British India, Vol 5: Chenopodiaceae to Orchideae. L. Reeve & Co., LondonGoogle Scholar
-
Hu Z, Wu QA (1992) Studies of the rare and endangered plant species in the Yunnan region of China. In: Adams RP, Adams JE (eds) Conservation of plant genes: DNA banking and in vitro biotechnology. Academic Press, New York, pp 267–272CrossRefGoogle Scholar
-
Huang YJ, Jia LB, Wang Q, Mosbrugger V et al (2016) Cenozoic plant diversity of Yunnan: a review. Plant Divers 38:271–282CrossRefGoogle Scholar
-
Jarolímek I, Kolbek J (2006) Plant communities dominated by Salix gracilis in Korean peninsula and Japan. Biol Bratisl 61:63–70CrossRefGoogle Scholar
-
Jeong HR, Kim HJ, Choi K et al (2012) Vegetation structure and distribution of forested wetland at public and private forests in Daegu City. J Agric Life Sci 46:69–84Google Scholar
-
Jiang HE, Wang L, Merlin MD et al (2016) Ancient Cannabis burial shroud in a Central Eurasian cemetery. Econ Bot 70:213–221CrossRefGoogle Scholar
-
Jung YK, Kim JW (1998) Syntaxonomy of mantle communities in South Korea. Korean J Ecol 21:739–750Google Scholar
-
Khan MS, Halim M (1990) Flora of Bangladesh, No. 14: Cannabidaceae. Bangladesh Agricultural Research Council, DaccaGoogle Scholar
-
Khuroo AA, Rashid I, Reshi Z et al (2007) The alien flora of Kashmir Himalaya. Biol Invas 9:269–292CrossRefGoogle Scholar
-
Kim SS, Kim YS, Ha SG, Shin HT (2010) Dispersion of vascular plant in Daepyeong swamp, Korea. J Korean Nat 3:187–198CrossRefGoogle Scholar
-
Knobloch AH, Mai DH (1986) Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpr ustred ustavu Geol 47:1–219Google Scholar
-
Kobayashi M, Momohara A, Okitsu S et al (2008) Fossil hemp fruits in the earliest Jomon period from the Okinoshima site, Chiba Prefecture. Shokuseishi kenkyū 16:11–18Google Scholar
-
Kolbek J, Karolímek I (2008) Man-influenced vegetation of North Korea. Linzer Biol Beitr 40:381–404Google Scholar
-
Kolbek J, Sádlo J (1996) Some short-lived ruderal plant communities of non-trampled habitats in North Korea. Folia Geobot 31:207–217CrossRefGoogle Scholar
-
Kress WJ, DeFilipps RA, Farr E et al (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. Smithsonian Institution, Washington, DCGoogle Scholar
-
Kuhn D (1988) Textile Technology: Spinning and reeling. In: Needham J, Wang L (eds) Science and civilisation in China, vol 5. Part 9. Cambridge University Press, Cambridge, pp 1–520Google Scholar
-
Lee SJ, Ahn YH (2014) Study of vegetation structure about shrine forest in Jirisan National Park with regard to global warming. J Environ Sci Int 23:1,863–1,879CrossRefGoogle Scholar
-
Lee CY, Liew PM (2010) Late quaternary vegetation and climate changes inferred from a pollen record of Dongyuan Lake in southern Taiwan. Palaeogeogr Palaeoclimatol Palaeoecol 287:58–66CrossRefGoogle Scholar
-
Lee HJ, Kim JH, Chun YM, Choung HL (1976) Synecology of the forest vegetation of Yeongjongo. Korean J Ecol 26:223–236Google Scholar
-
Lee KS, Cho MG, Moon HS, Jeon KS (2013) The list of vascular plants at Junam wetland in Changwon City. Korean J Agric For Meteorol 15:67–75CrossRefGoogle Scholar
-
Li HL (1974) An archaeological and historical account of cannabis in China. Econ Bot 28:437–448CrossRefGoogle Scholar
-
Li XH, Shao JW, Lu C et al (2012) Chloroplast phylogeography of a temperate tree Pteroceltis tatarinowii (Ulmaceae) in China. J Syst Evol 50:325–333CrossRefGoogle Scholar
-
Long T, Wagner M, Demske D, Leipe C, Tarasov PE (2017) Cannabis in Eurasia: origin of human use and Bronze Age trans-continental connections. Veget Hist Archaeobot 26:245–258CrossRefGoogle Scholar
-
Lynch RC, Vergara D, Tittes S et al (2016) Genomic and chemical diversity in Cannabis. Crit Rev Plant Sci 35:349–363CrossRefGoogle Scholar
-
Manchester SR, Akhmetiev MA, Kodrul TM (2002) Leaves and fruits of Celtis aspera(Newberry) comb. nov. (Celtidaceae) from the Paleocene of North America and Eastern Asia. Int J Plant Sci 163:725–736CrossRefGoogle Scholar
-
Manchester SR, Chen ZD, Lu AM et al (2009) Eastern Asian endemic seed plant genera and their paleogeographic history throughout the northern hemisphere. J Syst Evol 47:1–42CrossRefGoogle Scholar
-
Maximovich CJ (1859) Primitiae florae Amurensis. Versuch einer Flora des Amur-Landes, Kaiserliche Akademie der WissenschaftenGoogle Scholar
-
McPartland JM (2018) Cannabis systematics at the levels of family, genus, and species. Cannabis Cannabinoid Res 3:203–212CrossRefGoogle Scholar
-
McPartland JM, Hegman W (2018) Cannabis utilization and diffusion patterns in prehistoric Europe: a critical analysis of archaeological evidence. Veget Hist Archaeobot 27:627–634CrossRefGoogle Scholar
-
McPartland JM, Guy GW, Hegman W (2018) Cannabis is indigenous to Europe and cultivation began during the Copper or Bronze age: a probabilistic synthesis of fossil pollen studies. Veget Hist Archaeobot 27:635–648CrossRefGoogle Scholar
-
Mercuri AM, Accorsi CA, Mazzanti MB (2002) The long history of Cannabis and its cultivation by the Romans in central Italy, shown by pollen records from Lago Albano and Lago di Nemi. Veget Hist Archaeobot 11:263–276CrossRefGoogle Scholar
-
Miao YF, Meng QQ, Fang XM et al (2011) Origin and development of Artemisia(Asteraceae) in Asia and its implications for the uplift history of the Tibetan Plateau: a review. Quat Int 236:3–12CrossRefGoogle Scholar
-
Morley RJ, Dick CW (2003) Missing fossils, molecular clocks, and the origin of the Melastomataceae. Am J Bot 90:1,638–1,644CrossRefGoogle Scholar
-
Mosbrugger V, Utescher T (1997) The co-existence approach—a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol 134:61–86CrossRefGoogle Scholar
-
Ni J, Yu G, Harrison SP, Prentice IC (2010) Palaeovegetation in China during the late quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeogr Palaeoclimatol Palaeoecol 289:44–61CrossRefGoogle Scholar
-
Oh YJ, Yoo JH, Moon BC et al (2008) Habitat characteristic and community structures of Humulus japonicus in Korea’s middle region. Korean J Environ Agric 27:72–79CrossRefGoogle Scholar
-
Oh HK, Beon MS, Kim YH (2010) Classification by plants communities of the Wi-do (Island), Buan—focused on Jilli evergeen forest, Chido wetland, and Seokgeum. J Korean Nat 3:159–169CrossRefGoogle Scholar
-
Palamarev E (1982) Heoгeнcкaтa кapпoфлopa нa Meлнишкия бaceйн. Paleontol Stratigr Lithol 16:3–43Google Scholar
-
Parham JF, Donoghue PCJ, Bell CJ et al (2012) Best practices for justifying fossil calibrations. Syst Biol 61:346–359CrossRefGoogle Scholar
-
Pételot PA (1954) Les plantes médicinales du Cambodge, du Laos et du Viêtnam. Centre de recherches scientifiques et techniques, SaigonGoogle Scholar
-
Quamar MF, Bera SK (2017) Pollen records related to vegetation and climate change from northern Chhattisgarh, central India during the late Quaternary. Palynology 41:17–30CrossRefGoogle Scholar
-
Russo EB, Jiang HE, Li X et al (2008) Phytochemical and genetic analyses of ancient cannabis from Central Asia. J Exper Bot 59:4,171–4,182CrossRefGoogle Scholar
-
Santisuk T, Balslev H (2015) Flora of Thailand, Vol 13, Part 1: Achariaceae, Adoxaceae, Cannabaceae, Caprifoliaceae, Ericaceae, Salicaceae & Ulmaceae. Forest Herbarium, Depart of National Parks, Wildlife and Plant Conservation, BangkokGoogle Scholar
-
Sawler J, Stout JM, Gardner KM et al (2015) The genetic structure of marijuana and hemp. PLoS ONE 10:e0133292CrossRefGoogle Scholar
-
Small E (1978) A numerical and nomenclatural analysis of morpho-geographic taxa of Humulus. Syst Bot 3:37–76CrossRefGoogle Scholar
-
Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25:405–435CrossRefGoogle Scholar
-
Song JS, Song SD (1996) A phytosociological study on the riverside vegetation around Hanchon an upper stream of Nak-tong River. Korean J Ecol 19:431–451Google Scholar
-
Song YH, Cohen DJ, Shi JM et al (2017) Environmental reconstruction and dating of Shizitan 29, Shanxi Province: an early microblade site in north China. J Archaeol Sci 79:19–35CrossRefGoogle Scholar
-
Sood SK, Thakur R (2015) Herbal resources of India and Nepal. Scientific Publishers, JadhpurGoogle Scholar
-
Stevens PF (2008) Angiosperm phylogeny website, Version 9. Accesssed at http://www.mobot.org/MOBOT/research/APweb/
-
Steward RR (1971) Flora of West Pakistan. Fakhri, KarachiGoogle Scholar
-
Sun BN, Wu JY, Liu YS et al (2011) Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeogr Palaeoclimatol Palaeoecol 304:328–336CrossRefGoogle Scholar
-
Sun JM, Ni XJ, Bi SD et al (2014) Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene boundary in Asia. Sci Rep 4:7,463CrossRefGoogle Scholar
-
Tarasov PE, Savelieva LA, Long T et al (2018) Postglacial vegetation and climate history and traces of early human impact and agriculture in the present-day cool mixed forest zone of European Russia. Quat Int. https://doi.org/10.1016/j.quaint.2018.02.029Google Scholar
-
Vavilov NI (1926) The origin of the cultivation of “primary” crops, in particular cultivated hemp. Tpyды пo пpиклaднoй бoтaникe, гeнeтикe и ceлeкции 16:221–233Google Scholar
-
Wang WM (1996) On the origin and development of steppe vegetation in China. Palaeobotanist 45:447–456Google Scholar
-
Watt G (1889) A dictionary of the economic products of India, vol 2. Calcutta Office of the Superintendent of Government Printing, AllenGoogle Scholar
-
Wilson DG (1975) Plant remains from the Graveney boat and the early history of Humulus lupulus L. in W, Europe. N Phytol 75:627–648CrossRefGoogle Scholar
-
Wu JY, Liu J, Provan J et al (2018) Testing Darwin’s transoceanic dispersal hypothesis for the inland nettle family (Urticaceae). Ecol Lett 21(1515):1529Google Scholar
-
Xing YW, Ree RH (2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. PNAS 114:E3,444–E3,451CrossRefGoogle Scholar
-
Yang MQ, van Velzen R, Bakker FT et al (2013) Molecular phylogenetics and character evolution of Cannabaceae. Taxon 62:458–472CrossRefGoogle Scholar
-
Yang MQ, Li DZ, Wen J et al (2017) Phylogeny and biogeography of the amphi-Pacific genus Aphananthe. PLoS ONE 12:e0171405CrossRefGoogle Scholar
-
Yesson C, Russell SJ, Parrish T et al (2004) Phylogenetic framework for Trema (Celtidaceae). Plant Syst Evol 248:85–109CrossRefGoogle Scholar
-
Zecchetto S, De Blasio F (2007) Sea surface winds over the Mediterranean Basin of satellite data (2000-04): Meso- and Local-scale features on annual and seasonal time scales. J Appl Meteorol Climatol 46:814–827CrossRefGoogle Scholar
-
Zhang SL, Gao HY (1999) 荥阳青台遗址出土的丝麻品观察与研究 (Observation and study of silk and hemp recovered from Qingtai archaeological site, Xingyang). Zhōngyuán Wénwù 3:10–16Google Scholar
-
Zhang HL, Jin JJ, Moore MJ et al (2018a) Plastome characteristics of Cannabaceae. Plant Divers 40:127–137CrossRefGoogle Scholar
-
Zhang QY, Chen X, Gou HY et al (2018b) Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front Plant Sci 9:1876CrossRefGoogle Scholar
-
Zhao HB, Chen FD, Chen SM et al (2010) Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst Evol 284:153–169CrossRefGoogle Scholar
-
Zhou YM (1980) 钱山漾残绢片出土的启示 (Revelations of the excavation of the silk tabby remnant from Qianshanyang). Wénwù 1980(1):74–77Google Scholar
-
Zhou Z, Bartholomew B (2003) Cannabaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 5. Science Press, Beijing, pp 74–75Google Scholar
-
Zhou B, Shen CD, Sun WD et al (2007) Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420 ka and its response to environmental and climate changes. Palaeogeogr Palaeoclimatol Palaeoecol 252:617–625CrossRefGoogle Scholar