Abstract
Hemp (Cannabis sativa L.), an annual dioecious plant, has shown extensive application in the fields of fibers, food, oil, medicine, etc. Currently, most attention has been paid to the therapeutic properties of phytocannabinoids. However, the pharmaceutical research on essential oil from hemp is still lacking. In this study, hemp essential oil (HEO) was extracted from hemp flowers and leaves, and the components were analyzed by GC-MS. Quatitative analysis of three main compounds β-caryophyllene, β-caryophyllene oxide, α -humulene were determined by GC-FID. The anti-tumor and anti-neuropathic pain effects of HEO were evaluated. In the paclitaxel induced neuropathic mice model, HEO reduced the serum level of inflammatory cytokines TNF-α to achieve the analgesic effect, which was tested by evaluating mechanical and thermal hyperalgesia. Further investigation with cannabinoid receptor 2 (CB2 R) antagonist AM630 revealed the mechanism of reversing mechanical hyperalgesia may be related to CB2 R. In Lewis lung cancer grafted mice model, the tumor growth was significantly inhibited, the levels of tumor inflammatory cytokines TNF-α and IL-6 were downregulated, immune organ index was modified and immune-related CD4+, CD8+ T lymphocytes level, CD4+/CD8+ ratio were increased when administered with HEO. These results reveal that HEO plays a role not only in tumor chemotherapy induced peripheral neuropathy treatment, but also in anti-tumor treatment which offers key information for new strategies in cancer treatment and provides reference for the medicinal development of hemp.
Copyright © 2023. Published by Elsevier B.V.
LinkOut – more resources
-
Full Text Sources
-
Research Materials
-
Miscellaneous