- PMID: 34575494
- DOI: 10.3390/pharmaceutics13091415
Abstract
Cannabidiol (CBD), a primary bioactive phytocannabinoid extracted from hemp, is reported to possess potent anti-tumorigenic activity in multiple cancers. However, the effects of CBD on bladder cancer (BC) and the underlying molecular mechanisms are rarely reported. Here, several experiments proved that CBD promoted BC cells (T24, 5637, and UM-UC-3) death. For example, T24 cells were treated with 12 µM CBD for 48 h, flow cytometry analysis demonstrated that early and late apoptotic cells were accounted for by 49.91%, indicating CBD enhanced cell apoptosis ability. To deeper explore molecular mechanisms, the CBD-treated T24 cell transcriptome libraries were established. KEGG analysis implied that the significantly changed genes were enriched in the PI3K/Akt pathway. qRT-PCR and Western blot assays verified that CBD regulated BC cells growth and migration and induced apoptosis by inactivating the PI3K/Akt pathway. Meanwhile, the developed chitosan to wrap CBD-loaded PLGA nanoparticles can significantly enhance the adhesion of the material to the mouse bladder wall, and the binding efficiency of mucin to chitosan-PLGA nanoparticles reached 97.04% ± 1.90%. In summary, this work demonstrates that CBD may become a novel reliable anticancer drug and the developed intravesical adhesion system is expected to turn into a potential means of BC chemotherapy drug delivery.
Keywords: CBD-loaded PLGA, PI3K/Akt, RNA sequencing, bladder cancer (BC), cannabidiol (CBD), chitosan