Author information
Abstract
Cannabidiol (CBD), a non-euphorigenic compound derived from Cannabis, shows promise for improving recovery following cerebral ischemia and has recently been shown effective for the treatment of childhood seizures caused by Dravet and Lennox-Gastaut syndromes. Given evidence for activity to mitigate effects of CNS insult and dysfunction, we considered the possibility that CBD may also protect and improve functional recovery of a complex learned behavior. To test this hypothesis, we have applied a songbird, the adult male zebra finch, as a novel pre-clinical animal model. Their learned vocalizations were temporarily disrupted with bilateral microlesions of HVC (used as a proper name) a pre-vocal motor cortical-like brain region that drives song. These microlesions destroy about 10% of HVC, and temporarily impair song production, syntax and phonology for about seven days. Recovery requires sensorimotor learning as it depends upon auditory feedback. Four CBD doses (0, 1, 10 and 100 mg/kg) within three surgery conditions (microlesion, no-microlesion, sham-microlesion) were evaluated (n = 5-6). Birds were recorded over 20 days: three baseline; six pre-microlesion drug treatment days and; 11 post-microlesion treatment and recovery days. Results indicate 10 and 100 mg/kg CBD effectively reduced the time required to recover vocal phonology and syntax. In the case of phonology, the magnitude of microlesion-related disruptions were also reduced. These results suggest CBD holds promise to improve functional recovery of complex learned behaviors following brain injury, and represent establishment of an important new animal model to screen drugs for efficacy to improve vocal recovery.
Copyright © 2019. Published by Elsevier Ltd.