Abstract
Methamphetamine (METH) is a highly potent and addictive psychostimulant that is frequently abused worldwide. Although the biggest challenge to the efficient treatment of drug dependence is relapse, its mechanism is completely unclear. Plenty of evidence suggests that inflammation contributes to drug-induced reward especially in brain regions that are involved in the reward system, but there is no document about relapse. Cannabidiol (CBD) is a nonpsychoactive cannabinoid that has powerful anti-inflammatory and immunosuppressive properties. A previous research in our laboratory has demonstrated that CBD prevents reinstatement of METH even in 24-hour rapid eye movement (REM) sleep-deprived (RSD) rats. The aim of this study was to assess whether CBD prevents reinstatement of METH through change of gene expression of cytokines such as interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor α (TNF-α) in extinguished rats. Real-time polymerase chain reaction (PCR) was used in this research to assay gene expression of cytokines. We found that stress- and drug-induced reinstatement of METH enhanced mRNA expression of cytokines in the prefrontal cortex (PFC) and hippocampus. Furthermore, CBD treatment significantly reduced the mRNA expression of cytokines in the PFC and hippocampus, but CBD treatment in RSD rats increased expression of cytokines in the hippocampus. It seems that enhancement of cytokines leads to change in neurotransmission and so triggers reinstatement of METH.
© 2019 Society for the Study of Addiction.
KEYWORDS:
REM sleep deprivation; cannabidiol; inflammatory cytokines expression; methamphetamine; reinstatement; reward system
- PMID: 30793820
- DOI: 10.1111/adb.12740
-
Grant support
Grant support