Canna~Fangled Abstracts

Cannabinoids and the Microbiota-Gut-Brain-Axis: Emerging Effects of Cannabidiol and Potential Applications to Alcohol Use Disorders.

By December 5, 2019December 6th, 2019No Comments
2019 Dec 5. doi: 10.1111/acer.14256.
[Epub ahead of print]

Abstract

The endocannabinoid system (ECS) has emerged in recent years as a potential treatment target for alcohol use disorders (AUD). In particular, the non-psychoactive cannabinoid cannabidiol (CBD) has shown preclinical promise in ameliorating numerous clinical symptoms of AUD. There are several proposed mechanism(s) through which cannabinoids (and CBD in particular) may confer beneficial effects in the context of AUD. First, CBD may directly impact specific brain mechanisms underlying AUD to influence alcohol consumption and the clinical features of AUD. Second, CBD may influence AUD symptoms through its actions across the digestive, immune, and central nervous systems, collectively known as the microbiota-gut-brain-axis (MGBA). Notably, emerging work suggests that alcohol and cannabinoids exert opposing effects on the MGBA. Alcohol is linked to immune dysfunction (e.g., chronic systemic inflammation in the brain and periphery) as well as disturbances in gut microbial species (microbiota) and increased intestinal permeability. These MGBA disruptions have been associated with AUD symptoms such as craving and impaired cognitive control. Conversely, existing preclinical data suggest that cannabinoids may confer beneficial effects on the gastrointestinal and immune system, such as reducing intestinal permeability, regulating gut bacteria and reducing inflammation. Thus, cannabinoids may exert AUD harm-reduction effects, at least in part, through their beneficial actions across the MGBA. This review will provide a brief introduction to the ECS and the MGBA, discuss the effects of cannabinoids (particularly CBD) and alcohol in the brain, gut, and immune system (i.e., across the MGBA), and put forth a theoretical framework to inform future research questions.

PMID: 31803950
DOI: 10.1111/acer.14256

Publication type

Publication type

LinkOut – more resources

Full Text Sources

Leave a Reply