Author information
Abstract
Background Dental plaque is a complex biofilm that gets formed on the teeth and acts as a reservoir of different microbes. It is the root cause for the occurrence of several dental problems and diseases, including cavities, bad breath, bleeding gums, tooth decay, and tooth loss. Therefore, it should be regularly removed using suitable oral care aids. Objectives The present study compared the efficacy of oral care products and cannabinoids in reducing the bacterial content of dental plaques. Methods Sixty adults aged 18 to 45 years were categorized into six groups based on the Dutch periodontal screening index. Dental plaques of the adults were collected using paro-toothpick sticks and spread on two Petri dishes, each with four divisions. On Petri dish-A, cannabidiol (CBD), cannabichromene (CBC), cannabinol (CBN), and cannabigerol (CBG) were used, and on Petri dish-B, cannabigerolic acid (CBGA), Oral B, Colgate, and Cannabite F (a toothpaste formulation of pomegranate and algae) were used. The Petri dishes were sealed and incubated, followed by counting the number of colonies. Results By evaluating the colony count of the dental bacteria isolated from six groups, it was found that cannabinoids were more effective in reducing the bacterial colony count in dental plaques as compared to the well-established synthetic oral care products such as Oral B and Colgate. Conclusion Cannabinoids have the potential to be used as an effective antibacterial agent against dental plaque-associated bacteria. Moreover, it provides a safer alternative for synthetic antibiotics to reduce the development of drug resistance.
Copyright © 2020, Stahl et al.
KEYWORDS: antibacterial, cannabinoids, dental plaque, oral care products, personalized dental care
- PMID: 32038896
- PMCID: PMC6991146
- DOI: 10.7759/cureus.6809
Conflict of interest statement
Veronica Stahl have pending patents (in process) for application of cannabinoids in dental care, personalization and treatments. . Veronica Stahl also has a financial interest in CannIBite.