Canna~Fangled Abstracts

Developmental Increase in Hippocampal Endocannabinoid Mobilization: Role of Metabotropic Glutamate Receptor Subtype 5 and Phospholipase C.

By September 5, 2014No Comments
2014 Sep 3. pii: jn.00111.2014. [Epub ahead of print]

pm1Developmental Increase in Hippocampal Endocannabinoid Mobilization: Role of Metabotropic Glutamate Receptor Subtype 5 and Phospholipase C.

Abstract

Endocannabinoids (eCBs) released from postsynaptic neurons mediate retrograde suppression of neurotransmitter release at central synapses. Endocannabinoids are crucial for establishing proper synaptic connectivity in the developing nervous system. Mobilization of eCBs is driven either by a rise in intracellular Ca2+ (depolarization-induced suppression of inhibition, DSI) or postsynaptic G protein-coupled receptors (GPCRs) that activate phospholipase C beta (PLCβ). To determine if eCB mobilization changes between neonatal and juvenile ages, we used whole-cell voltage-clamp recordings of CA1 neurons from rat hippocampal slices at postnatal days (PN) 1-18 (neonatal) and 19-43 (juvenile), because many neurophysiological parameters change dramatically between ~PN 18-20. We found that DSI was slightly greater in juveniles than in neonates, while eCB mobilization stimulated by GPCRs was unchanged. However, when DSI was elicited during GPCR activation, its increase was much greater in juveniles, suggesting that eCB mobilization caused by the synergy between the Ca2+ and GPCR pathways is developmentally upregulated. Western blotting revealed significant increases in both mGluR5 and PLCβ1 proteins in juveniles compared to neonates. Responses to pharmacological activation or inhibition of PLC implied that eCB upregulation is associated with a functional increase in PLC activity. We conclude that synergistic eCB mobilization in hippocampal CA1 neurons is greater in juveniles than in neonates and that this may result from increases in the mGluR5-PLCβ1 eCB pathway. The data enhance our understanding of the developmental regulation of the eCB system, and may provide insight into diseases caused by improper cortical wiring, or the impact of cannabis exposure during development.
Copyright © 2014, Journal of Neurophysiology.

KEYWORDS:

CA1 region; DSI; G protein-coupled receptors; mAChRs; whole-cell voltage-clamp

PMID:

 25185819
[PubMed – as supplied by publisher]twin memes II