Abstract
Drug-resistant bacterium infections are a severe threat to public health and novel antimicrobial agents combating drug-resistant bacteria are an unmet medical need. Although cannabidiol (CBD) has been reported to show antibacterial effects, whether its antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) can be improved remains unclear. Herein, a series of novel CBD derivatives were designed and synthesized using various chemical approaches including amidation, Friedel-Crafts alkylation, and Negishi cross-coupling reaction for the modifications at the C-7, C-2′, C-4′, and C-6′ positions of CBD skeleton. Derivative 21f showed augmented antibacterial activity against MRSA with a minimum inhibitory concentration of 4 μM without cytotoxic effect in microglia BV2 cells. Further mechanistic studies suggested that 21f inhibited the formation of biofilms, induced excess reactive oxygen species, and reduced bacterial metabolism, which collectively led to the acceleration of bacterial death. Findings from this study expand the understanding of CBD derivatives as promising antibacterial agents, which provides useful information for the development of cannabinoid-based antibacterial agents.
Keywords: 3D-QSAR, Antibacterial, Cannabidiol, Cannabidiol derivatives, Methicillin-resistant Staphylococcus aureus
Copyright © 2023 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.