Canna~Fangled Abstracts

Neuropeptide VF Enhances Cannabinoid Agonist WIN55,212-2-Induced Antinociception in Mice.

By August 13, 2015No Comments
2015 Aug 13. [Epub ahead of print]

Abstract

PM 1aBACKGROUND:

Cannabinoids produce analgesia in several pain models, but the undesirable side effects from high doses of cannabinoid drugs limit their clinic use. Our recent results indicate that cannabinoid-induced antinociception was enhanced by neuropeptide VF (NPVF). Here, we investigate whether low-dose cannabinoid agonists combined with NPVF can produce effective antinociception with limited side effects.

METHODS:

The in vivo properties of (R)-(-1)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN55,212-2) given alone and its combination with NPVF were evaluated in nociceptive modulation, locomotor activity, gastrointestinal transit, and tolerance development assays after intracerebroventricular administration in mice.

RESULTS:

In the radiant tail-flick test, the antinociception of combination of WIN55,212-2 and NPVF was more potent than that of cannabinoid agonist given alone, with an ED50 shift from 3.51 to 0.69 nmol; 9 nmol WIN55,212-2 alone and 3 nmol WIN55,212-2 combined with NPVF induced equivalent antinociception after supraspinal administration. The cannabinoid-potentiating effects of NPVF were reduced by both the cannabinoid receptor type 1 and the neuropeptide FF receptor antagonists. In the formalin assay, WIN55,212-2 combined with NPVF also significantly reduced pain-related behaviors. However, the combination of WIN55,212-2 with NPVF exerted significant hypoactivity in a manner similar to high doses of WIN55,212-2. It was important to note that the combination of WIN55,212-2 with NPVF produced nontolerance-forming antinociception and weaker inhibition of gastrointestinal transit compared with high dose of WIN55,212-2.

CONCLUSIONS:

These data suggest that the cannabinoid agonist combined with NPVF produces effective antinociception-lacking tolerance via both cannabinoid receptor type 1 and neuropeptide FF receptors in the brain.

PMID:

 

26273748

 

[PubMed – as supplied by publisher] 
twin memes II