Canna~Fangled Abstracts

Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease

By April 5, 2013No Comments
 2014 Jan 5. doi: 10.1038/nn.3615. [Epub ahead of print]

pm8Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease.

Abstract

Although postsynaptic glycine receptors (GlyRs) as αβ heteromers attract considerable research attention, little is known about the role of presynaptic GlyRs, likely α homomers, in diseases. Here, we demonstrate that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, can rescue GlyR functional deficiency and exaggerated acoustic and tactile startle responses in mice bearing point mutations in α1 GlyRs that are responsible for a hereditary startle-hyperekplexia disease. The GlyRs expressed as α1 homomers either in HEK-293 cells or at presynaptic terminals of the calyceal synapses in the auditory brainstem are more vulnerable than heteromers to hyperekplexia mutation-induced impairment. Homomeric mutants are more sensitive to DH-CBD than are heteromers, suggesting presynaptic GlyRs as a primary target. Consistent with this idea, DH-CBD selectively rescues impaired presynaptic GlyR activity and diminished glycine release in the brainstem and spinal cord of hyperekplexic mutant mice. Thus, presynaptic α1 GlyRs emerge as a potential therapeutic target for dominant hyperekplexia disease and other diseases with GlyR deficiency.
PMID:

 24390226
[PubMed – as supplied by publisher] nature neuroscience

At a glance

Figures index

FromPresynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease

Nature Neuroscience

 17,
232–239

doi:10.1038/nn.3615

back to article

Figures

  1. The [alpha]1R271Q mutation impairs GlyR function and causes exaggerated startle behavior in mice.

    Figure 1

    The α1R271Q mutation impairs GlyR function and causes exaggerated startle behavior in mice.

  2. DH-CBD rescues [alpha]1 R271Q mutation-induced GlyR deficiency and hyper-reflexia in mice.

    Figure 2

    DH-CBD rescues α1 R271Q mutation–induced GlyR deficiency and hyper-reflexia in mice.

  3. Site-specific restoration of hyperekplexic GlyR dysfunction and startle responses by DH-CBD.

    Figure 3

    Site-specific restoration of hyperekplexic GlyR dysfunction and startle responses by DH-CBD.

  4. Differential sensitivity of homomeric and heteromeric GlyRs to hyperekplexic mutations and DH-CBD.

    Figure 4

    Differential sensitivity of homomeric and heteromeric GlyRs to hyperekplexic mutations and DH-CBD.

  5. Rescue by DH-CBD of diminished glycine release in spinal slices from [alpha]1 R271Q mutant mice.

    Figure 5

    Rescue by DH-CBD of diminished glycine release in spinal slices from α1 R271Q mutant mice.

  6. Differential sensitivity of presynaptic and postsynaptic GlyRs to hyperekplexic mutation and rescue by DH-CBD.

    Figure 6

    Differential sensitivity of presynaptic and postsynaptic GlyRs to hyperekplexic mutation and rescue by DH-CBD.

Supplementary Figures

  1. The R271Q heterozygous mutant mice exhibit a rotarod performance similar to their wild type (WT) littermates.

    Supplementary Figure 1

    The R271Q heterozygous mutant mice exhibit a rotarod performance similar to their wild type (WT) littermates.

  2. The efficacy of DH-CBD potentiation of R271Q mutant GlyRs.

    Supplementary Figure 2

    The efficacy of DH-CBD potentiation of R271Q mutant GlyRs.

  3. DH-CBD does not significantly alter strychnine inhibition of GlyRs.

    Supplementary Figure 3

    DH-CBD does not significantly alter strychnine inhibition of GlyRs.

  4. Addition of the [beta] subunit does not alter protein expression of R271Q and WT receptors at the cell surfaces

    Supplementary Figure 4

    Addition of the β subunit does not alter protein expression of R271Q and WT receptors at the cell surfaces

  5. DH-CBD does not restore diminished glycinergic transmission in spinal slices from the [alpha]1Q266I mutant mice.

    Supplementary Figure 5

    DH-CBD does not restore diminished glycinergic transmission in spinal slices from the α1Q266I mutant mice.

  6. The effect of PTX on the Gly sIPSC amplitdue in spinal slices obtained from the [alpha]1R271Q mutant mice.

    Supplementary Figure 6

    The effect of PTX on the Gly sIPSC amplitdue in spinal slices obtained from the α1R271Q mutant mice.

  7. DH-CBD restores seizure-like behavior in homozygous M287L mice.

    Supplementary Figure 7

    DH-CBD restores seizure-like behavior in homozygous M287L mice.

  8. Cannabinoid sensitive presynaptic GlyRs as a primary therapeutic target in the treatment of familial startle disease.

    Supplementary Figure 8

    Cannabinoid sensitive presynaptic GlyRs as a primary therapeutic target in the treatment of familial startle disease.

 

 Video 1: Supplementary Video 1

Exaggerated startle response to sound stimuli of the α1R271Q mutant mouse prior to DH-CBD administration.
Video 2: Supplementary Video 2

Exaggerated startle response to sound stimuli of the α1R271Q mutant mouse 5 min after administration of DH-CBD (30 mg/kg, i.p.).
Video 3: Supplementary Video 3

Delayed righting reflex of the α1R271Q mutant mouse prior to DH-CBD administration.
Video 4: Supplementary Video 4

Righting reflex of the α1R271Q mutant mouse 5 min after administration of DH-CBD (30 mg/kg, i.p.).

References

  1. Davidoff, R.A., Shank, R.P., Graham, L.T. Jr., Aprison, M.H. & Werman, R. Association of glycine with spinal interneurones. Nature 214, 680–681 (1967).
  2. Betz, H. & Laube, B. Glycine receptors: recent insights into their structural organization and functional diversity. J. Neurochem. 97, 1600–1610 (2006).
  3. Grudzinska, J. et al. The β subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45, 727–739 (2005).
  4. Weltzien, F., Puller, C., O’Sullivan, G.A., Paarmann, I. & Betz, H. Distribution of the glycine receptor β-subunit in the mouse CNS as revealed by a novel monoclonal antibody. J. Comp. Neurol. 520, 3962–3981 (2012).
  5. Lynch, J.W. & Callister, R.J. Glycine receptors: a new therapeutic target in pain pathways.Curr. Opin. Investig. Drugs 7, 48–53 (2006).
  6. Turecek, R. & Trussell, L.O. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411, 587–590 (2001).
  7. Jeong, H.-J., Jang, I.-S., Moorhouse, A.J. & Akaike, N. Activation of presynaptic glycine receptors facilitates glycine release from presynaptic terminals synapsing onto rat spinal sacral dorsal commissural nucleus neurons. J. Physiol. (Lond.) 550, 373–383 (2003).
  8. Ye, J.-H. et al. Presynaptic glycine receptors on GABAergic terminals facilitate discharge of dopaminergic neurons in ventral tegmental area. J. Neurosci. 24, 8961–8974 (2004).
  9. Hruskova, B. et al. Differential distribution of glycine receptor subtypes at the rat calyx of held synapse. J. Neurosci. 32, 17012–17024 (2012).
  10. Shiang, R. et al. Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat. Genet. 5, 351–358 (1993).
  11. Harvey, R.J., Topf, M., Harvey, K. & Rees, M.I. The genetics of hyperekplexia: more than startle!. Trends Genet. 24, 439–447 (2008).
  12. Bakker, M.J., van Dijk, J.G., van den Maagdenberg, A.M. & Tijssen, M.A. Startle syndromes.Lancet Neurol. 5, 513–524 (2006).
  13. Davies, J.S. et al. The glycinergic system in human startle disease: a genetic screening approach. Front. Mol. Neurosci. 3, 8 (2010).
  14. Becker, L. et al. Disease-specific human glycine receptor α1 subunit causes hyperekplexia phenotype and impaired glycine- and GABA(A)-receptor transmission in transgenic mice.J. Neurosci. 22, 2505–2512 (2002).
  15. Findlay, G.S. et al. Glycine receptor knock-in mice and hyperekplexia-like phenotypes: comparisons with the null mutant. J. Neurosci. 23, 8051–8059 (2003).
  16. Blednov, Y.A., Benavidez, J.M., Homanics, G.E. & Harris, R.A. Behavioral characterization of knockin mice with mutations M287L and Q266I in the glycine receptor α1 subunit. J. Pharmacol. Exp. Ther. 340, 317–329 (2012).
  17. Zhang, L. & Xiong, W. Nonpsychoactive cannabinoid action on 5-HT3 and glycine receptors. in Endocannabinoids: Actions at Non-CB1/CB2 Cannabinoid Receptors (eds. Abood, M.E., Sorensen, R.G. & Stella, N.) 199–218 (Springer, 2013).
  18. Xiong, W. et al. Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. J. Exp. Med. 209, 1121–1134 (2012).
  19. Xiong, W. et al. Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat. Chem. Biol. 7, 296–303 (2011).
  20. Kehne, J.H., Gallager, D.W. & Davis, M. Strychnine: brainstem and spinal mediation of excitatory effects on acoustic startle. Eur. J. Pharmacol. 76, 177–186 (1981).
  21. Pribilla, I., Takagi, T., Langosch, D., Bormann, J. & Betz, H. The atypical M2 segment of the β subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. EMBO J.11, 4305–4311 (1992).
  22. Yang, Z., Cromer, B.A., Harvey, R.J., Parker, M.W. & Lynch, J.W. A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore. J. Neurochem. 103,580–589 (2007).
  23. Deleuze, C. et al. Structural difference between heteromeric somatic and homomeric axonal glycine receptors in the hypothalamo-neurohypophysial system. Neuroscience135, 475–483 (2005).
  24. Schneggenburger, R. & Forsythe, I.D. The calyx of Held. Cell Tissue Res. 326, 311–337(2006).
  25. Turecek, R. & Trussell, L.O. Reciprocal developmental regulation of presynaptic ionotropic receptors. Proc. Natl. Acad. Sci. USA 99, 13884–13889 (2002).
  26. O’Shea, S.M., Becker, L., Weiher, H., Betz, H. & Laube, B. Propofol restores the function of “hyperekplexic” mutant glycine receptors in Xenopus oocytes and mice. J. Neurosci. 24,2322–2327 (2004).
  27. Shan, Q., Han, L. & Lynch, J.W. Function of hyperekplexia-causing α1R271Q/L glycine receptors is restored by shifting the affected residue out of the allosteric signalling pathway. Br. J. Pharmacol. 165, 2113–2123 (2012).
  28. Lape, R., Plested, A.J., Moroni, M., Colquhoun, D. & Sivilotti, L.G. The α1K276E startle disease mutation reveals multiple intermediate states in the gating of glycine receptors. J. Neurosci. 32, 1336–1352 (2012).
  29. Harvey, R.J. et al. GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884–887 (2004).
  30. Zhou, H.Y. et alN-methyl-D-aspartate receptor- and calpain-mediated proteolytic cleavage of K+-Cl cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain. J. Biol. Chem. 287, 33853–33864 (2012).
  31. Andermann, F., Keene, D.L., Andermann, E. & Quesney, L.F. Startle disease or hyperekplexia: further delineation of the syndrome. Brain 103, 985–997 (1980).
  32. Zhou, L., Chillag, K.L. & Nigro, M.A. Hyperekplexia: a treatable neurogenetic disease.Brain Dev. 24, 669–674 (2002).
  33. Praveen, V., Patole, S.K. & Whitehall, J.S. Hyperekplexia in neonates. Postgrad. Med. J.77, 570–572 (2001).
  34. Rees, M.I. et al. Hyperekplexia associated with compound heterozygote mutations in the β-subunit of the human inhibitory glycine receptor (GLRB). Hum. Mol. Genet. 11, 853–860(2002).
  35. Chung, S.K. et al. GLRB is the third major gene of effect in hyperekplexia. Hum. Mol. Genet. 22, 927–940 (2013); erratum 22, 2552 (2013).
  36. Rees, M.I. et al. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat. Genet. 38, 801–806 (2006).
  37. Izzo, A.A., Borrelli, F., Capasso, R., Di Marzo, V. & Mechoulam, R. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci.30, 515–527 (2009).
  38. Ashton, H. Guidelines for the rational use of benzodiazepines. When and what to use.Drugs 48, 25–40 (1994).
  39. Tijssen, M.A. et al. The effects of clonazepam and vigabatrin in hyperekplexia. J. Neurol. Sci. 149, 63–67 (1997).
  40. Borghese, C.M. et al. Characterization of two mutations, M287L and Q266I, in the α1 glycine receptor subunit that modify sensitivity to alcohols. J. Pharmacol. Exp. Ther. 340,304–316 (2012).
  41. Kung, A.Y., Rick, C., O’Shea, S., Harrison, N.L. & McGehee, D.S. Expression of glycine receptors in rat sensory neurons vs. HEK293 cells yields different functional properties.Neurosci. Lett. 309, 202–206 (2001).
  42. Sebe, J.Y., Eggers, E.D. & Berger, A.J. Differential effects of ethanol on GABAA and glycine receptor–mediated synaptic currents in brain stem motoneurons. J. Neurophysiol. 90,870–875 (2003).
  43. Chau, P., Hoifodt-Lido, H., Lof, E., Soderpalm, B. & Ericson, M. Glycine receptors in the nucleus accumbens involved in the ethanol intake-reducing effect of acamprosate.Alcohol. Clin. Exp. Res. 34, 39–45 (2010).
  44. Li, J. et al. Microinjection of glycine into the ventral tegmental area selectively decreases ethanol consumption. J. Pharmacol. Exp. Ther. 341, 196–204 (2012).
  45. Findlay, G.S. et al. Transgenic expression of a mutant glycine receptor decreases alcohol sensitivity of mice. J. Pharmacol. Exp. Ther. 300, 526–534 (2002).
  46. Hu, X.-Q., Sun, H., Peoples, R.W., Hong, R. & Zhang, L. An interaction involving an arginine residue in the cytoplasmic domain of the 5-HT3A receptor contributes to receptor desensitization mechanism. J. Biol. Chem. 281, 21781–21788 (2006).
  47. Pan, Y.Z. & Pan, H.L. Primary afferent stimulation differentially potentiates excitatory and inhibitory inputs to spinal lamina II outer and inner neurons. J. Neurophysiol. 91,2413–2421 (2004).
  48. Zhou, H.Y., Zhang, H.M., Chen, S.R. & Pan, H.L. Increased C-fiber nociceptive input potentiates inhibitory glycinergic transmission in the spinal dorsal horn. J. Pharmacol. Exp. Ther. 324, 1000–1010 (2008).
  49. Helmchen, F., Borst, J.G. & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72, 1458–1471 (1997).
  50. Xiong, W., Wu, X., Lovinger, D.M. & Zhang, L. A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. J. Neurosci. 32,5200–5208 (2012); erratum 32, 12979 (2012).
potp font 1