Skip to main content
Canna~Fangled Abstracts

Promising Action of Cannabinoids on ER Stress-Mediated Neurodegeneration: An In Silico Investigation

By November 18, 2022November 20th, 2022No Comments


doi: 10.1615/JEnvironPatholToxicolOncol.2022040055.

Affiliations 

Abstract

Neurodegeneration has been recognized as a clinical episode characterized by neuronal death, including dementia, cognitive impairment and movement disorder. Most of the neurodegenerative deficits, via clinical symptoms, includes common pathogenic features as protein misfolding and aggregation. Therefore, the focus highlights the cellular organelle endoplasmic reticulum (ER) critically linked with the quality control and protein homeostasis. Unfolded protein response (UPR) or ER stress have also been considered as hallmarks for neurodegenerative disorders. It has been implicated that the levels of endocannabinoids (ECB) could rise at the platform of neurodegeneration. In addition, phytocannabinoids (PCB) including cannabidiol (CBD) could also initiate the IRE1, PERK, XBP-1, and ATF6, pathways that could lead to the degradation of the misfolded proteins and termination of protein translation. Thus, our aim was to determine if cannabinoids bind to these ER arm proteins involved in UPR by molecular docking and therefore determine its drug resemblance through ADME analysis. In our study, three cannabinoid receptors (CB1, CB2, and CB3) were considered to demonstrate their neuroprotective actions. The chosen ligands were screened as PCB (Δ9-tetrahydrocannabinol or THC), CBD, and two ECB, anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The current findings have advocated that the cannabinoids and their molecular targets have shown considerable binding and their ADME properties also reveals that they possess moderate drug-like properties making it as a valuable option for the treatment and management of neurodegenerative diseases.

MeSH terms

Substances

LinkOut – more resources


Leave a Reply