Abstract
Δ9 -tetrahydrocannabinol (Δ9 -THC) and cannabidiol (CBD) are cannabinoids found in Cannabis sativa. While research supports cannabinoids reduce inflammation, the consensus surrounding receptor(s) mediated effects has yet to be established. Here, we investigated the receptor-mediated properties of Δ9 -THC and CBD on alveolar macrophages, an important pulmonary immune cell in direct contact with cannabinoids inhaled by cannabis smokers. MH-S cells, a mouse alveolar macrophage cell line, were exposed to Δ9 -THC and CBD, with and without lipopolysaccharide (LPS). Outcomes included RNA-sequencing and cytokine analysis. Δ9 -THC and CBD alone did not affect the basal transcriptional response of MH-S cells. In response to LPS, Δ9 -THC and CBD significantly reduced the expression of numerous pro-inflammatory cytokines including TNF-α, IL-1β and IL-6, an effect that was dependent on CB2 . The anti-inflammatory effects of CBD- but not Δ9 -THC- were mediated through a reduction in signaling through NF-κB and ERK1/2. These results suggest that CBD and Δ9 -THC have potent immunomodulatory properties in alveolar macrophages, a cell type important in immune homeostasis in the lungs. Further investigation into the effects of cannabinoids on lung immune cells could lead to the identification of therapies that may ameliorate conditions characterized by inflammation.
Keywords: RNA-sequencing, cannabinoid, cannabis, inflammation, macrophage
This article is protected by copyright. All rights reserved.