Skip to main content
Canna~Fangled Abstracts

Short term feeding of industrial hemp with a high cannabidiolic acid (CBDA) content increases lying behavior and reduces biomarkers of stress and inflammation in Holstein steers

By March 7, 2022March 8th, 2022No Comments


doi: 10.1038/s41598-022-07795-z.

Affiliations 

Abstract

Industrial hemp (IH) is defined as Cannabis sativa containing < 0.3% delta-9 tetrahydrocannabinol (THC) and was legalized in the 2018 Farm Bill. The impact of cannabinoids in IH fed to livestock, especially after repeat exposure, has not been thoroughly investigated. Sixteen male castrated Holstein cattle weighting (± SD) 447 ± 68 kg were enrolled onto the study. Cattle were allocated into two treatment groups either receiving IH (HEMP, n = 8) or a control (CNTL, n = 8). Cattle in the HEMP group were fed 25 g IH mixed in 200 g of grain once a day for 14 days to target a daily dose of 5.5 mg/kg of cannabidiolic acid (CBDA). Behavior was continuously monitored with accelerometers and blood samples were collected at predetermined time points for plasma cannabinoid, serum cortisol, serum haptoglobin, liver enzymes, serum amyloid A, and prostaglandin E2 concentrations. The HEMP group spent a mean 14.1 h/d (95% CI 13.6-14.6 h/d) lying compared to the 13.4 h/d (95% CI 12.9-13.8 h/d) for the CNTL cattle (P = 0.03). Cortisol concentrations in the HEMP group were lower than the CNTL group (P = 0.001). Cattle in the HEMP group demonstrated an 8.8% reduction in prostaglandin E2 concentrations from baseline compared to a 10.2% increase from baseline observed in the CNTL group. No differences for haptoglobin or serum amyloid A were observed. These results suggest that feeding IH with a high CBDA content for 14 days increases lying behavior and decreases biomarkers of stress and inflammation in cattle.

References

    1. Ingrao, C. et al. Energy and environmental assessment of industrial hemp for building applications: A review. Renew. Sustain. Energy Rev. 51, 29–42. https://doi.org/10.1016/j.rser.2015.06.002 (2015). – DOI
    1. Schluttenhofer, C. & Yuan, L. Challenges towards revitalizing hemp: A multifaceted crop. Trends Plant Sci. 22, 917–929. https://doi.org/10.1016/j.tplants.2017.08.004 (2017). – DOI – PubMed
    1. Pisanti, S. et al. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol. Ther. 175, 133–150. https://doi.org/10.1016/j.pharmthera.2017.02.041 (2017). – DOI – PubMed
    1. Kleinhenz, M. D. et al. Nutrient concentrations, digestibility, and cannabinoid concentrations of industrial hemp plant components. Appl. Anim. Sci. 36, 489–494. https://doi.org/10.15232/aas.2020-02018 (2020). – DOI
    1. Kleinhenz, M. D. et al. Plasma concentrations of eleven cannabinoids in cattle following oral administration of industrial hemp (Cannabis sativa). Sci. Rep. https://doi.org/10.1038/s41598-020-69768-4 (2020). – DOI – PubMed – PMC

Leave a Reply