Canna~Fangled Abstracts

VGluT3-Expressing CCK-Positive Basket Cells Construct Invaginating Synapses Enriched with Endocannabinoid Signaling Proteins in Particular Cortical and Cortex-Like Amygdaloid Regions of Mouse Brains.

By March 11, 2015No Comments
2015 Mar 11;35(10):4215-28. doi: 10.1523/JNEUROSCI.4681-14.2015.

Abstract

pm1Invaginating synapses in the basal amygdala are a unique type of GABAergic synapses equipped with molecular-anatomical organization specialized for 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling. Cholecystokinin (CCK)-positive basket cell terminals protrude into pyramidal cell somata and form invaginating synapses, where apposing presynaptic and postsynaptic elements are highly loaded with cannabinoid receptor CB1 or 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα), respectively. The present study scrutinized their neurochemical and neuroanatomical phenotypes in adult mouse telencephalon. In the basal amygdala, vesicular glutamate transporter-3 (VGluT3) was transcribed in one-fourth of CB1-expressing GABAergic interneurons. The majority of VGluT3-positive CB1-expressing basket cell terminals apposed DGLα clusters, whereas the majority of VGluT3-negative ones did not. Importantly, VGluT3-positive basket cell terminals selectively constructed invaginating synapses. GABAA receptors accumulated on the postsynaptic membrane of invaginating synapses, whereas metabotropic glutamate receptor-5 (mGluR5) was widely distributed on the somatodendritic surface of pyramidal cells. Moreover, CCK2 receptor (CCK2R) was highly transcribed in pyramidal cells. In cortical regions, pyramidal cells equipped with such VGluT3/CB1/DGLα-accumulated invaginating synapses were found at variable frequencies depending on the subregions. Therefore, in addition to extreme proximity of CB1- and DGLα-loaded presynaptic and postsynaptic elements, tripartite transmitter phenotype of GABA/glutamate/CCK is the common neurochemical feature of invaginating synapses, suggesting that glutamate, CCK, or both can promote 2-AG synthesis through activating Gαq/11 protein-coupled mGluR5 and CCK2R. These molecular configurations led us to hypothesize that invaginating synapses might be evolved to provide some specific mechanisms of induction, regulation, and cooperativity for 2-AG-mediated retrograde signaling in particular cortical and cortex-like amygdaloid regions.
Copyright © 2015 the authors 0270-6474/15/354215-14$15.00/0.

KEYWORDS:

amygdala; cannabinoid CB1 receptor; cerebral cortex; cholecystokinin-positive basket cell; invaginating synapse; sn-1-specific diacylglycerol lipase

PMID:

 

25762668

 

[PubMed – in process]
twin memes II