Author information
Abstract
Hibernators have adapted a physiological mechanism allowing them to undergo long periods of inactivity without experiencing bone loss. However, the biological mechanisms that prevent bone loss are unknown. Previous studies found meaningful changes, between active and hibernating marmots, in the endocannabinoid system of many tissues, including bone. Cannabinoid receptors (CB1 and CB2) have divergent localization in bone. CB1 is predominately found on sympathetic nerve terminals, while CB2 is more abundant on bone cells and their progenitors. This study aimed to determine the contribution of innervation on endocannabinoid regulation of bone properties in hibernating (during torpor) and non-hibernating yellow-bellied marmots. Neurectomy, a model for disuse osteoporosis, was performed unilaterally in both hibernating and active marmots. Endocannabinoid concentrations were measured in bone marrow, cortical, and trabecular regions from fourth metatarsals of both hindlimbs using microflow chromatography-tandem quadrupole mass spectrometry. Trabecular bone architectural properties of fifth metatarsals were evaluated using micro-computed tomography. There were ligand-specific increases with neurectomy in active, but not hibernating, marmots. Trabecular bone architectural properties were not affected by neurectomy during hibernation, but did show some minor negative changes in active marmots. These findings suggest protection from bone loss in hibernating rodents is peripherally rather than centrally regulated. Furthermore, findings suggest even active marmots with normal metabolism are partially protected from disuse induced bone loss compared to laboratory rodents. Understanding the mechanism hibernators use to maintain bone density may guide development for novel bone loss prevention therapies.
Copyright © 2019. Published by Elsevier Inc.