Canna~Fangled Abstracts

Cannabidiol-loaded injectable chitosan-based hydrogels promote spinal cord injury repair by enhancing mitochondrial biogenesis

By September 5, 2022September 9th, 2022No Comments


doi: 10.1016/j.ijbiomac.2022.09.013.

Online ahead of print.
Affiliations 

Abstract

The treatment of traumatic spinal cord injury (SCI) remains challenging as the neuron regeneration is impaired by irregular cavity and apoptosis. An injectable in situ gelling hydrogel is therefore developed for the local delivery of cannabidiol (CBD) through a novel method based on polyelectrolyte (PEC) interaction of sodium carboxymethylcellulose (CMC) and chitosan (CS). It can be injected into the spinal cord cavity with a 26-gauge syringe before gelation, and gelled after 110 ± 10 s. Of note, the in-situ forming hydrogel has mechanical properties similar to spinal cord. Moreover, the CBD-loaded hydrogels sustain delivery of CBD for up to 72 h, resulting in reducing apoptosis in SCI by enhancing mitochondrial biogenesis. Importantly, the CBD-loaded hydrogels raise neurogenesis more than pure hydrogels both in vivo and in vitro, further achieving significant recovery of motor and urinary function in SCI rats. Thus, it suggested that CMC/CS/CBD hydrogels could be used as promising biomaterials for tissue engineering and SCI.

Keywords: Cannabidiol, Hydrogel, Mitochondrial biogenesis apoptosis, Spinal cord injury

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.


Leave a Reply