Canna~Fangled Abstracts

Effects of repeated lysergic acid diethylamide (LSD) on the mouse brain endocannabinoidome and gut microbiome

By October 31, 2022January 9th, 2023No Comments


doi: 10.1111/bph.15977.

Online ahead of print.
Affiliations 

Abstract

Background and purpose: Psychedelics elicit prosocial, antidepressant and anxiolytic effects via neuroplasticity, neurotransmission and neuro-immunomodulatory mechanisms. Whether psychedelics affect the brain endocannabinoid system and its extended version, the endocannabinoidome (eCBome) or the gut microbiome, remains unknown.

Experimental approach: Adult C57BL/6N male mice were administered lysergic acid diethylamide (LSD) or saline for 7 days. Sociability was assessed in the direct social interaction and three chambers tests. Prefrontal cortex and hippocampal endocannabinoids, endocannabinoid-like mediators and metabolites were quantified via high-pressure liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Neurotransmitter levels were assessed via HPLC-UV/fluorescence. Gut microbiome changes were investigated by 16S ribosomal DNA sequencing.

Key results: LSD increased social preference and novelty and decreased hippocampal levels of the N-acylethanolamines N-linoleoylethanolamine (LEA), anandamide (N-arachidonoylethanolamine) and N-docosahexaenoylethanolamine (DHEA); the monoacylglycerol 1/2-docosahexaenoylglycerol (1/2-DHG); the prostaglandins D2 (PGD2 ) and F2α (PGF ); thromboxane 2 and kynurenine. Prefrontal eCBome mediator and metabolite levels were less affected by the treatment. LSD decreased Shannon alpha diversity of the gut microbiota, prevented the decrease in the Firmicutes:Bacteroidetes ratio observed in saline-treated mice and altered the relative abundance of the bacterial taxa Bifidobacterium, Ileibacterium, Dubosiella and Rikenellaceae RC9.

Conclusions and implications: The prosocial effects elicited by repeated LSD administration are accompanied by alterations of hippocampal eCBome and kynurenine levels, and the composition of the gut microbiota. Modulation of the hippocampal eCBome and kynurenine pathway might represent a mechanism by which psychedelic compounds elicit prosocial effects and affect the gut microbiome.

Keywords: 5-hydroxytryptamine system, endocannabinoidome, gut microbiome, kynurenine, lysergic acid diethylamide, repeated, serotonergic system, sociability

Similar articles

Cited by

References

REFERENCES

    1. Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al-hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors. British Journal of Pharmacology, 178(S1), S27-S156. https://doi.org/10.1111/bph.15538
    1. Aran, A., Eylon, M., Harel, M., Polianski, L., Nemirovski, A., Tepper, S., Schnapp, A., Cassuto, H., Wattad, N., & Tam, J. (2019). Lower circulating endocannabinoid levels in children with autism spectrum disorder. Molecular Autism, 10, 2. https://doi.org/10.1186/s13229-019-0256-6
    1. Barnes, N. M., & Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology, 38, 1083-1152. https://doi.org/10.1016/S0028-3908(99)00010-6
    1. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. https://doi.org/10.1139/y59-099
    1. Boyd, E., Rothlin, E., Bonner, J., Slater, I., & Hodge, H. (1955). Preliminary studies of the metabolism of lysergic acid diethylamide using radioactive carbon-marked molecules. The Journal of Nervous and Mental Disease, 122, 470-471. https://doi.org/10.1097/00005053-195511000-00009

LinkOut – more resources


Leave a Reply