Uncategorized

Role of integrating cannabinoids and the endocannabinoid system in neonatal hypoxic-ischaemic encephalopathy

By April 12, 2023May 6th, 2023No Comments


 2023; 16: 1152167.
Published online 2023 Apr 12. doi: 10.3389/fnmol.2023.1152167
PMCID: PMC10130673
PMID: 37122621
Jie Xiao, 1 , † Yue Zhou, 2 , † Luqiang Sun, 3 and Haichuan Wangcorresponding author 4 , *

Abstract

Neonatal hypoxic-ischaemic events, which can result in long-term neurological impairments or even cell death, are among the most significant causes of brain injury during neurodevelopment. The complexity of neonatal hypoxic-ischaemic pathophysiology and cellular pathways make it difficult to treat brain damage; hence, the development of new neuroprotective medicines is of great interest. Recently, numerous neuroprotective medicines have been developed to treat brain injuries and improve long-term outcomes based on comprehensive knowledge of the mechanisms that underlie neuronal plasticity following hypoxic-ischaemic brain injury. In this context, understanding of the medicinal potential of cannabinoids and the endocannabinoid system has recently increased. The endocannabinoid system plays a vital neuromodulatory role in numerous brain regions, ensuring appropriate control of neuronal activity. Its natural neuroprotection against adult brain injury or acute brain injury also clearly demonstrate the role of endocannabinoid signalling in modulating neuronal activity in the adult brain. The goal of this review is to examine how cannabinoid-derived compounds can be used to treat neonatal hypoxic-ischaemic brain injury and to assess the critical function of the endocannabinoid system and its potential for use as a new neuroprotective treatment for neonatal hypoxic-ischaemic brain injury.

Keywords: cannabinoids, endocannabinoid system, HIE, neuroprotective, brain development

Introduction

One of the major causes of impairment in newborns is neonatal hypoxic-ischaemic encephalopathy (HIE), which has serious long-term implications for child development (). At present, the incidence of perinatal asphyxia ranges between 0.5–1% of all live births, and substantial neurologic damage occurs in as many as 50–75% of these children (). Depending on the severity, location, and type of neurologic damage as well as the gestational age, impairments may include a variety of sensorimotor and cognitive abnormalities, which arise at various stages of development and have a considerable effect on children, their families, and society (). Although neuroprotective treatment has improved, the development of neurological damage remains a substantial issue in HIE cases ().

Currently, neuroprotective measures, such as the rapid identification of affected neonates to enable the timely initiation of therapy, improved monitoring during the perinatal period, strict control during intensive care, and therapies that lessen the developing injury, are urgently needed to minimize the neurological effects of hypoxic-ischaemic brain damage (). For instance, it is important to concentrate on the period directly after the hypoxic-ischaemic episode in neonatal insults because this is when therapeutic approaches can be effective in preventing brain damage. This time frame is typically brief and might range from 2 to 6 h. Therefore, rapid identification would enable easier application of various rescue treatments. Recent studies on neonates have revealed that hypothermia provides varying degrees of neuroprotection, either by preventing DNA breakage and apoptotic cell death after hypoxia-ischaemia () or by delaying the accumulation of intracellular calcium, decreasing the synthesis of nitric oxide, and decreasing the glutamate concentration in the synaptic space (). The only currently available treatment for hypoxic-ischaemic injury in newborns is therapeutic hypothermia, which, despite advancements in its administration, is ineffective in approximately 50% of treated infants (). In addition, this treatment has variable efficacy in asphyxiated children and is more effective in treating larger babies than smaller babies (). Thus, the complicated pathophysiology of HIE makes treatment challenging and necessitates the development of multiple approaches ().

Currently, alternative treatments focus on reducing brain damage caused by free radicals by using antioxidant compounds, such as allopurinol, which blocks xanthine oxidase () and N-acetylcysteine activity, which reduces apoptosis and inflammation while increasing the intracellular level of glutathione to sequester free radicals (). Erythropoietin, which has antiapoptotic and angiogenic effects, is another frequently utilized antioxidant-related medication () and has been shown to promote neurogenesis and have neuroprotective effects in newborn rats (). Similarly, melatonin prevents brain damage and the subsequent development of sequelae (). Additionally, substances with anti-inflammatory qualities have been investigated. These include second generation tetracyclines, which prevent microglia from being activated, approaches that increase the lifespan of neurons (), and statins, which reduce the expression of interleukin-1β and intercellular adhesion molecule 1 (). Due to the intricacy of neonatal hypoxic-ischaemic pathophysiology, there is presently no treatment specifically for perinatal brain injuries.

Recent research suggests that cannabinoids are highly effective neuroprotective agents in both acute neurodegenerative conditions, such as hypoxic-ischaemic encephalopathy or traumatic brain injury, and chronic conditions, such as multiple sclerosis (MS), Parkinson’s disease, and Alzheimer’s disease (AD) (). Additionally, cannabinoids have anti-excitotoxic (), anti-inflammatory (), and vasodilatory effects () and can regulate calcium homeostasis (). Due to their ability to alter glial and neuronal responses, these chemicals have become recognized as neuroprotectants. According to recent research, several anti-inflammatory medications may enhance healing by encouraging neurogenesis after brain injury (). Because of its anti-inflammatory properties, cannabinoid receptor activation is an important neuroprotective therapy for neonatal hypoxic-ischaemic brain injury (). In this report, we concentrate on the function of cannabinoids and endocannabinoids and their potential to prevent brain damage caused by neonatal hypoxia and ischaemia.

Cannabis and cannabinoids

In the 1960s, as marijuana use for recreational purposes increased, anecdotal reports suggested that cannabis could help people with Tourette syndrome, MS, and epilepsy (). Cannabis, the most widely used illegal recreational drug in the world, comprises approximately 80 phenolic compounds and terpenes, also known as “cannabinoids” (). As we know, major efforts have been made to pinpoint the chemical components that give marijuana and other cannabis flower preparations their euphoric, perception-altering, and potentially therapeutic effects (). For instance, cannabinoids originating from plants are commonly referred to as phytocannabinoids, of which 9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, is the most well-known (). The phytocannabinoid cannabidiol (CBD), in addition to THC, may have an important role in mediating the impact of cannabis on post-traumatic stress disorder (PTSD). While THC is known to exert effects by directly activating cannabinoid receptors, CBD is known to interact with a variety of neurochemical systems, most notably serotonergic and adenosine signalling, and thus its pharmacology is more complex (). Since the psychoactive effects of THC limit its therapeutic potential and restrict its use in clinical investigations, CBD is more acceptable for clinical development, even for paediatric populations ().

The endocannabinoid system

Two inhibitory G-protein-coupled receptors (GPCRs), cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), as well as two important endogenous ligands, N-arachidonoylethanolamine (anandamide/AEA) and 2-arachidonoylglycerol (2-AG), make up the majority of the endocannabinoid system. Additionally, fatty acid amide hydrolase (FAAH) and monoacylglyceride lipase (MAGL), which hydrolyse AEA and 2-AG, respectively, are metabolic enzymes that considerably influence endocannabinoid signalling (). The lipid membranes of postsynaptic neurons contain the precursors for AEA and 2-AG. To bind to endocannabinoid receptors in the presynaptic space and control the release of other neurotransmitters, such as glutamate, GABA, dopamine, serotonin, and acetylcholine, AEA and 2-AG are produced as needed and are retrogradely transported across the synaptic cleft () (Figure 1).

An external file that holds a picture, illustration, etc.
Object name is fnmol-16-1152167-g001.jpg

Simplified scheme representing endocannabinoid system-modulated synaptic transmission. The endocannabinoids AEA and 2-AG are not stored in vesicles but instead are synthesized de novo from phospholipid precursors through calcium-dependent mechanisms. N-acylphosphatidylethanolamine (NAPE) is hydrolysed by N-arachidonoyl-phosphatidylethanolamine-specific phospholipase D (NPLD) to yield AEA, and diacylglycerol (DAG) is converted to 2-AG by diacylglycerol lipase (DAGL). Both endogenous ligands traverse the synaptic cleft and activate presynaptic CB1 receptors, thereby regulating ion channels and ultimately suppressing neurotransmitter release. Endocannabinoid signalling is terminated following degradation by hydrolytic enzymes in the presynaptic and postsynaptic compartments. Primarily, AEA is converted to arachidonic acid (AA) and ethanolamine by fatty acid amide hydrolase (FAAH) localized to the postsynaptic cell, whereas 2-AG is hydrolysed presynaptically into AA and glycerol by monacylglycerol lipase (MAGL).

Cannabinoid and endocannabinoid neuroprotective mechanism after HIE

Accumulated studies have reported that endocannabinoids modulate the intensity and extent of neurotoxic processes () and the inflammatory response () and promote cell survival (). Synthetic cannabinoid agonists have shown considerable grey and white matter protection in animal studies of brain injury (). In large animal models of perinatal asphyxia, the cannabinoid WIN55212-2 administered immediately after HI protected against mitochondrial injury and prevented apoptosis (). Cannabidiol given immediately after HI reduced neuronal injury, cerebral haemodynamic impairment, brain oedema and seizures and restored motor and behavioural performance 72 h after HI (). In rodent models of stroke, prolonged 7-day administration of the cannabinoid WIN55212-2 immediately after injury enhanced neuronal and oligodendrocyte recovery and regeneration in long-term (). Cannabinoids, however, achieve neuroprotection in part through hypothermia ().

Endocannabinoid metabolism

In 1992, AEA, the first described endocannabinoid, was discovered in the brain of a pig (). In the mid-1990s, 2-AG, the second most studied endocannabinoid, was found in the intestines of canines (). The most prevalent endocannabinoids in the central nervous system (CNS) and all peripheral tissues are AEA and 2-AG. The phospholipid precursors for AEA and 2-AG appear to be produced as needed in the somatodendritic compartment of neurons in response to calcium influx or activation of intracellular phospholipases. Although it is believed that endocannabinoids are instantly produced in response to specific stimuli, there is some evidence that they are transported through cells, stored, and even degraded in adiposomes, suggesting a complicated underlying mechanism of endocannabinoid signalling (). 2-AG may be the predominant endogenous agonist of CB2 receptors, and AEA has a higher affinity for CB1 receptors (). Additionally, it is well known that tissues contain more 2-AG than AEA (). Although AEA and 2-AG have well-established production and metabolism mechanisms, how these endocannabinoids are transported across the cell membrane remains unknown. Increasing evidence currently points to the possibility that cells can absorb AEA and 2-AG through protein transporter-mediated enhanced diffusion ().

Endocannabinoid receptors

The first endogenous CB1 receptor was initially discovered in samples from rat brains (). The cerebral cortex, hippocampus, caudate-putamen, substantia nigra pars reticulata, globus pallidus, entopeduncular nucleus, cerebellum, and spinal cord all have high levels of CB1 receptor expression (). Presynaptic CB1 receptors are primarily found in neurons. Some evidence indicates that only a small percentage of postsynaptic CB1 receptors is found in the mitochondria’s exterior membrane (), where it interferes with the respiratory chain and electron transport, altering brain metabolism and memory formation (). The CB1 receptors in astrocytes play a role in leptin signalling in the hypothalamus and the modulation of synaptic plasticity in the hippocampus (). In addition to stimulating adult progenitor stem cell proliferation and differentiation into neurons or astrocytes, activation of the CB1 receptor has a function in neurodegenerative diseases ().

Immune and haematopoietic cells were the first cells to be identified to have the second major endogenous CB2 receptor (). The widespread expression of CB2 receptors in immune cells indicates that endocannabinoids have a unique immunomodulatory function (). In addition to traditional immune tissues (thymus, bone marrow, and spleen), other peripheral organs, including the liver (), pancreatic beta cells (), bone (), myocardium (), and vasculature (), express CB2 receptors. According to research on neurological disorders, the main function of the CB2 receptor is immunological regulation. Studies on human brain samples have shown that microglia affected by disorders such as AD, MS, and amyotrophic lateral sclerosis (ALS) have high and specific expression of the CB2 receptor (). Furthermore, adult neurogenesis is also stimulated by CB2 receptor activation (), and some data suggest that the CB2 receptor plays a role in controlling the permeability of the blood–brain barrier (BBB) (). According to a study, healthy neurons show very little expression of the CB2 receptor, and CB2 receptor activation produces the opposite effect to that of CB1 receptor stimulation (). However, some of these investigations relied on pharmacological or immunological methods that were later discovered to have low selectivity, making the results of these studies questionable (). Finally, it is unclear how CB2 receptors impact neuronal activity. According to one study, functional interaction between the sodium-bicarbonate transporter and the postsynaptic CB2 receptor lowers neuronal excitability in the CA3 and CA2 areas of the hippocampus ().

Neurodevelopmental pattern of the cannabinoid and endocannabinoid system

The essential involvement of cannabinoid and endocannabinoid system receptors in important developmental processes, such as neurogenesis, glial formation, neuronal migration, axonal elongation, fasciculation (axonal bundling), synaptogenesis, and synaptic pruning, has been extensively demonstrated in the literature (). The major targets of THC are CB1 and CB2 receptors, with the CB1 receptor playing a considerable role in CNS development due to its widespread expression in the developing brain, unlike the CB2 receptor, which has a function that is mostly associated with cells of the microglial/macrophage lineage (). In humans, CB1 receptors are present and are functional by the ninth gestational week, which coincides with the start of cortex development. In rodents, CB1 receptors are present and functional from gestational day 11 (). CB1 receptors are temporarily present on white matter neuronal fibres in both rats and humans during the embryonic stages (). The growth and migration of axons to their final location to establish neuronal pathways may reflect the effects of CB1 receptors on axons or their presence on nonneuronal cells (astrocytes and oligodendrocytes) that direct neuronal migration and axonal elongation. Numerous pluripotent cells carry the CB1 receptor, which controls cell division and proliferation (), neural differentiation (). In postmitotic neurons, CB1 receptor expression and endocannabinoid signalling play crucial roles in the migration and differentiation of glutamatergic and GABAergic cortical cells, cholinergic basal forebrain neurons, GABAergic cerebellar cells, and hypothalamic neurons, according to studies conducted on rodents (). Before reaching high levels in early adulthood, when it is ubiquitously expressed and becomes the most abundant GPCR, and the expression of the CB1 receptor is dynamic throughout postnatal development until adolescence (). The adult brain regions with the highest concentrations of CB1 receptors include the cerebral cortex, basal ganglia, hippocampus, and cerebellum (), and CB1 receptors are predominantly localized to the synapse on presynaptic terminals () of both glutamatergic and GABAergic cells ().

The two main ligands of the endocannabinoid system, AEA and 2-AG, exhibit divergent ontogenic bioavailability and diverse developmental trajectories. While increasing 2-AG levels throughout embryonic development are correlated with cell differentiation and axonal elongation in the brain, it has been shown that AEA is essential during the early stages of pregnancy for embryo implantation in the uterus (). In addition, 2-AG levels peak at postnatal day 1 and then remain constant until adolescence, when they fluctuate (with high levels during both early and late adolescence) before returning to normal levels in adulthood (). In contrast, in the majority of the examined brain areas, AEA concentrations gradually rise from gestational day 21 and peak throughout adolescence ().

Endocannabinoid signalling in the immature brain and neural cell fate

Endocannabinoid signalling effects go well beyond neuromodulation and can even affect the survival of injured neurons. The ability of CB1 and CB2 receptors to communicate across multiple signalling pathways that regulate brain cell formation and maturation during developmental stages is reflected in cannabinoid regulation of neural cell survival (). Therefore, throughout embryonic neurogenesis and during perinatal and adolescent brain development when gliogenesis, myelination and neuron circuit refinement take place, cannabinoid receptors, their downstream signalling pathways and endocannabinoid ligands are all active. Endocannabinoid signalling exerts important cellular plasticity effects that may have an impact on neuronal remodelling of the developing brain in addition to supporting neuronal homeostasis in the adult brain. We next briefly discuss the effects of CB1 and CB2 receptors signalling on neural cell plasticity during brain development (Figure 2).

An external file that holds a picture, illustration, etc.
Object name is fnmol-16-1152167-g002.jpg

Endocannabinoid system control of neurogenesis and neural cell fate in the immature brain. CB1 receptor expression is present in neural progenitors (NPs) and increases during neuronal proliferation, differentiation and maturation. In contrast, the CB2 receptor is present in NPs and is downregulated upon neuronal proliferation, differentiation and maturation. During neuronal development, CB1 and CB2 receptors control NP proliferation, neuroblast migration and neuron maturation. Under neuroinflammatory conditions, activation of CB1 receptors has been shown to restore adult neurogenesis and decrease the number of injured neurons.

CB1 receptor signalling

CB1 receptors are expressed by cells ranging from neural progenitor (NP) cells to fully differentiated neurons with distinctly diverse functions. CB1 receptor signalling in NPs controls cell identity and proliferation, encouraging the shift from radial glial cells to intermediate progenitors (). Later, the ability of CB1 receptor signalling to regulate NP proliferation was found to be conserved in adult neurogenic regions, where CB1 receptors govern the proliferation of hippocampal subgranular cells (). The CB1 receptor is also active in the subventricular zone and influences oligodendrogenesis and neurogenesis (). Hemopressin, a CB1 receptor modulator, has been demonstrated to encourage SVZ-derived oligodendrogenesis in newborn mice (). In addition, a study of genetic engineering of FAAH and diacylglycerol lipase (DAGL), the key enzymes responsible for AEA breakdown and 2-AG synthesis, respectively, confirmed that endocannabinoid signalling controls adult neurogenesis in a manner consistent with findings from endocannabinoid receptor knockout mouse models ().

CB2 receptor signalling

The vast majority of neuronal populations lack the CB2 receptor, and its function in normal physiological brain function is a current topic of study. However, the importance of CB2 receptor signalling has been shown in cases of neurodegenerative diseases and nervous system injury. CB2 receptors are mostly recognized for their capacity to regulate neuroinflammation, and their activation is linked to decreased levels of inflammatory cytokines, innate immunity, and infiltration of peripheral immune cells (). Therefore, the CB2 receptor has neuroprotective effects that are primarily due to the regulation of the negative effects of inflammation. Previous studies have reported that inhibition of hippocampal neurogenesis can be prevented by the administration of a CB2 receptor agonist (); this treatment can also prevent inhibition of oligodendrogenesis in Borna Disease (BD) virus encephalitis (). Additionally, notable examples of the positive effects of the CB2 receptor in models of acute inflammation include protection against ageing-related neuroinflammation and reduced neurogenesis (). In the APP/PS1 experimental model of AD, CB2 receptor activation can reduce both cognitive decline and hippocampal neurogenesis impairment ().

The CB2 receptor is also expressed in NPs, and in addition to indirect regulation of neurogenesis and neuroprotection, its activity regulates cell proliferation and neurogenesis in a cell-autonomous manner (). As their activity promotes neuroblast migration towards the damaged cortex, CB2 receptors are known to be involved in brain encephalopathies (). These studies have highlighted the role of endocannabinoid signalling, including that of both the CB1 and CB2 receptors, in neuroblast migration along the rostral migratory stream (). Overall, the role of endocannabinoid signalling in neuronal development and plasticity is demonstrated by the capacity of the CB1 receptor to connect to numerous signalling pathways involved in neural precursor cell proliferation, neuronal differentiation, and survival. Furthermore, the therapeutic effects of cannabinoids in the treatment of brain encephalopathies and injuries to the developing brain are explained by the complementary effects of CB2 receptor signalling on neural cell survival. Notably, the development of CB2 receptor-specific manipulation techniques can mitigate the negative effects of neuroinflammation without causing the side effects that are associated with typical neuronal CB1 receptor activity.

Therapeutic potential of the cannabinoid and endocannabinoid system after hypoxia-ischemia

Several studies have proposed the involvement of the cannabinoid and endocannabinoid systems in a variety of activities, including the modulation of calcium homeostasis and excitability, regulation of immune and inflammatory responses (), activation of cytoprotective signalling pathways (), and modulation of synaptic plasticity, excitatory glutamatergic transmissions () and their hypothermic and antioxidant properties (), although the precise neuroprotective mechanisms of cannabis are not fully understood. In this context, the cannabinoid and endocannabinoid system may additionally serve as a crucial neuroprotective mechanism in both acute and chronic neuronal hypoxic-ischaemic brain injury.

Numerous in vitro investigations have documented the neuroprotective properties of cannabis in connection with its antioxidant properties (). Cannabis has shown these antioxidant-related neuroprotective effects in in vivo models of neurodegenerative disorders (). Additionally, it has been shown to reduce body temperature (). Studies on adult rats using various cannabinoids have shown that a considerable portion of the neuroprotective effect of these substances depends on the presence of hypothermic conditions, as returning the rat body temperature to a normal temperature decreases or even eliminates the positive effect (). Additionally, hypothermia, the current gold standard of treatment is not an easily accessible and 100% curative therapy due to its limited availability and technical complications. There is definitely a need for combination cannabinoid receptor agonist therapies that are easily accessible and have additive neuroprotective effects (). Previous studies have observed that a single injection of the CB1 synthetic agonist HU-210 significantly reduced body temperature, conferring a strong neuroprotective effect in hypoxic-ischaemic rats, and this beneficial effect was lost when animals were treated with the selective CB1 antagonist SR141716 (). The enhancement of hypothermia by stimulating the endocannabinoid systems or by combined therapies targeting the endocannabinoid system plus hypothermia may have beneficial outcomes in neonates, so these responses are currently under investigation in preclinical models (). Furthermore, cannabinoids cause vasodilation in the brain (), stabilize the BBB and are involved in neuron proliferative processes (). Cannabinoids improve the energy metabolism of astrocytes () and shield these glial cells from cytotoxic and proapoptotic stimuli after brain damage ().

Previous research has shown that CB1 receptor activation prevents acute stroke through several mechanisms, including the reduction of BBB disruption, a decrease in the volume of infarcted brain tissue, and the induction of hypothermia. These effects are all typically reversed by CB1 receptor antagonists (). Additionally, animals subjected to CB1 receptor deletion have more severe strokes (), although one study revealed that CB1 receptor antagonists might offer protection in cases of temporary or permanent cerebral artery blockage (). Similarly, CB2 receptor activation decreases infarct volume and enhances neurological outcome and cerebral microcirculatory function in mice with middle cerebral artery blockage (). In fact, palmitoylethanolamide and other N-acylethanolamines protected against transient focal cerebral ischaemia in rats and against the effects of middle cerebral artery occlusion in mice via mechanisms that did not require activation of the CB1 receptor but the CB2 receptor or TRPV1 (). Recent studies have shown that the anti-inflammatory and immunomodulatory effects of cannabis are mediated by CB2 receptors (). Numerous studies have demonstrated the anti-inflammatory therapeutic potential of CB2 receptor activation in conditions affecting the central nervous system, including MS, traumatic brain injury, and AD (). The presence of CB2 receptors in inflammatory cells in the brain, including microglia (), has recently been demonstrated, and CB2 receptor expression is induced by hypoxia-ischaemia in the brain (). Additionally, CB2 receptor agonists have demonstrated promising results in a variety of neonatal hypoxic-ischaemic brain injury paradigms, reducing cell death and modulating glutamate release, cytokine production, and the expression of cyclooxygenase-2 and iNOS. In an animal model of stroke, it was discovered that the CB2 receptor agonist O-1966 increased blood flow to the brain and reduced neuroinflammation (). In addition, CB2 receptor activation has been shown to reduce infarct size after middle cerebral artery occlusion and to decrease inflammation-dependent neurodegeneration, reducing the release of inflammatory cytokines and leukocyte adhesion to cerebral vessels (). These findings lend support to the idea that the protective effects of CB2 receptors are primarily due to their anti-inflammatory properties (). This offers new information on its potential application as a neuroprotective target following neonatal hypoxia.

However, the potential therapeutic effect of CB receptors on ischaemic disorders is far from clear in currently. For example, CB1R activation can promote either protective or toxic responses after brain ischaemia (), as these receptors can either promote the inhibition of glutamate (inducing neuroprotection) or the release of gamma-aminobutyric acid (thus amplifying the toxic response), leading to oxidative stress. In a recent report (), the CB2R-selective agonist GW405833 did not show a beneficial effect in a model of cerebral HI, although CB2R-induced neuroprotection has long been known to be related to its anti-inflammatory capacity. Thus, the antioxidant capacity and/or the anti-inflammatory effect developed by the endocannabinoid system after perinatal asphyxia remain a subject of investigation. Further studies should analyse the modulatory effect of CB receptors agonists on ROS and inflammatory cytokine production after HIE, which may contribute to illustrating the role of the cannabinoids and endocannabinoid system in HIE treatment.

Finally, numerous studies have suggested that using synthetic cannabis can lessen damage after brain injury (). A histopathological study specifically found that administering WIN55212 soon after recovery from hypoxia-ischaemia successfully reduced brain damage (). Additionally, WIN55212 was shown to prevent the death of apoptotic cells in every area examined by maintaining the integrity and activity of the mitochondria () and to encourage neurogenesis in the subventricular zone, oligodendrogenesis, white matter remyelination, and neuroblast production after neonatal hypoxic-ischaemic episodes ().

Conclusion

Interest in cannabinoids and endocannabinoids as treatments to manage neonatal hypoxic-ischaemic encephalopathy is supported by the pharmacological characteristics of cannabinoids. In experimental HIE and brain insult models, the administration of cannabis has been shown to have neuroprotective effects. Cannabis preparations may mitigate some of the negative effects of HIE damage in the developing brain. Because cannabinoids have a complicated pharmacology that enables them to target various molecular effectors and receptors, the use of cannabinoid compounds with diverse pharmacological profiles will have distinct effects. Endocannabinoids safeguard the developing brain by inhibiting neuronal excitotoxicity, inflammation, and oxidative stress as well as by altering the fate of neurons and preventing neurodegeneration and harmful glial activation. These cannabis substances provide promising potential clinical applications and raise the possibility of better long-term benefit outcomes for these individuals.

Author contributions

JX and YZ prepared the first draft of the manuscript. LS collected academic papers and provided critical advice on the manuscript. The study was conceptualized by HW, who also supervised the work and reviewed the entire manuscript. All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

The authors acknowledge the Department of Paediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, and Department of Pathology, Affiliated Hospital of Hubei Polytechnic University for supporting our work.

References

  • Adachi M., Sohma O., Tsuneishi S., Takada S., Nakamura H. (2001). Combination effect of systemic hypothermia and caspase inhibitor administration against hypoxic-ischemic brain damage in neonatal ratsPediatr. Res. 50, 590–595. doi: 10.1203/00006450-200111000-00010, PMID: [PubMed] [CrossRef[]
  • Aguado T., Palazuelos J., Monory K., Stella N., Cravatt B., Lutz B., et al.. (2006). The endocannabinoid system promotes astroglial differentiation by acting on neural progenitor cellsJ. Neurosci. 26, 1551–1561. doi: 10.1523/JNEUROSCI.3101-05.2006, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Aguado T., Romero E., Monory K., Palazuelos J., Sendtner M., Marsicano G., et al.. (2007). The CB1 cannabinoid receptor mediates excitotoxicity-induced neural progenitor proliferation and neurogenesisJ. Biol. Chem. 282, 23892–23898. doi: 10.1074/jbc.M700678200, PMID: [PubMed] [CrossRef[]
  • Alonso-Alconada D., Alvarez A., Alvarez F. J., Martinez-Orgado J. A., Hilario E. (2012). The cannabinoid WIN 55212-2 mitigates apoptosis and mitochondrial dysfunction after hypoxia ischemiaNeurochem. Res. 37, 161–170. doi: 10.1007/s11064-011-0594-z, PMID: [PubMed] [CrossRef[]
  • Alonso-Alconada D., Alvarez F. J., Alvarez A., Mielgo V. E., Goni-de-Cerio F., Rey-Santano M. C., et al.. (2010). The cannabinoid receptor agonist WIN 55,212-2 reduces the initial cerebral damage after hypoxic-ischemic injury in fetal lambsBrain Res. 1362, 150–159. doi: 10.1016/j.brainres.2010.09.050, PMID: [PubMed] [CrossRef[]
  • Arvin K. L., Han B. H., Du Y., Lin S. Z., Paul S. M., Holtzman D. M. (2002). Minocycline markedly protects the neonatal brain against hypoxic-ischemic injuryAnn. Neurol. 52, 54–61. doi: 10.1002/ana.10242, PMID: [PubMed] [CrossRef[]
  • Avraham H. K., Jiang S., Fu Y., Rockenstein E., Makriyannis A., Zvonok A., et al.. (2014). The cannabinoid CB (Zybura et al.) receptor agonist AM1241 enhances neurogenesis in GFAP/Gp120 transgenic mice displaying deficits in neurogenesisBr. J. Pharmacol. 171, 468–479. doi: 10.1111/bph.12478, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Aymerich M. S., Aso E., Abellanas M. A., Tolon R. M., Ramos J. A., Ferrer I., et al.. (2018). Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous systemBiochem. Pharmacol. 157, 67–84. doi: 10.1016/j.bcp.2018.08.016 [PubMed] [CrossRef[]
  • Barata L., Arruza L., Rodriguez M. J., Aleo E., Vierge E., Criado E., et al.. (2019). Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damageNeuropharmacology 146, 1–11. doi: 10.1016/j.neuropharm.2018.11.020, PMID: [PubMed] [CrossRef[]
  • Barha C. K., Ishrat T., Epp J. R., Galea L. A., Stein D. G. (2011). Progesterone treatment normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus after traumatic brain injuryExp. Neurol. 231, 72–81. doi: 10.1016/j.expneurol.2011.05.016, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Ben Amar M. (2006). Cannabinoids in medicine: A review of their therapeutic potentialJ. Ethnopharmacol. 105, 1–25. doi: 10.1016/j.jep.2006.02.001, PMID: [PubMed] [CrossRef[]
  • Benard G., Massa F., Puente N., Lourenco J., Bellocchio L., Soria-Gomez E., et al.. (2012). Mitochondrial CB (1) receptors regulate neuronal energy metabolismNat. Neurosci. 15, 558–564. doi: 10.1038/nn.3053 [PubMed] [CrossRef[]
  • Berger R., Garnier Y. (2000). Perinatal brain injuryJ. Perinat. Med. 28, 261–285. doi: 10.1515/JPM.2000.034 [PubMed] [CrossRef[]
  • Berghuis P., Rajnicek A. M., Morozov Y. M., Ross R. A., Mulder J., Urban G. M., et al.. (2007). Hardwiring the brain: Endocannabinoids shape neuronal connectivityScience 316, 1212–1216. doi: 10.1126/science.1137406 [PubMed] [CrossRef[]
  • Berrendero F., Sepe N., Ramos J. A., Di Marzo V., Fernández-Ruiz J. J. (1999). Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal periodSynapse 33, 181–191. doi: 10.1002/(SICI)1098-2396(19990901)33:3<181::AID-SYN3>3.0.CO;2-R, PMID: [PubMed] [CrossRef[]
  • Biegon A., Kerman I. A. (2001). Autoradiographic study of pre-and postnatal distribution of cannabinoid receptors in human brainNeuroImage 14, 1463–1468. doi: 10.1006/nimg.2001.0939 [PubMed] [CrossRef[]
  • Bosier B., Bellocchio L., Metna-Laurent M., Soria-Gomez E., Matias I., Hebert-Chatelain E., et al.. (2013). Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytesMol. Metab. 2, 393–404. doi: 10.1016/j.molmet.2013.08.001 [PMC free article] [PubMed] [CrossRef[]
  • Bravo-Ferrer I., Cuartero M. I., Zarruk J. G., Pradillo J. M., Hurtado O., Romera V. G., et al.. (2017). Cannabinoid Type-2 receptor drives neurogenesis and improves functional outcome after strokeStroke 48, 204–212. doi: 10.1161/STROKEAHA.116.014793 [PubMed] [CrossRef[]
  • Carli G., Reiger I., Evans N. (2004). One-year neurodevelopmental outcome after moderate newborn hypoxic ischaemic encephalopathyJ. Paediatr. Child Health 40, 217–220. doi: 10.1111/j.1440-1754.2004.00341.x [PubMed] [CrossRef[]
  • Carloni S., Girelli S., Buonocore G., Longini M., Balduini W. (2009). Simvastatin acutely reduces ischemic brain damage in the immature rat via Akt and CREB activationExp. Neurol. 220, 82–89. doi: 10.1016/j.expneurol.2009.07.026 [PubMed] [CrossRef[]
  • Carloni S., Mazzoni E., Cimino M., De Simoni M. G., Perego C., Scopa C., et al.. (2006). Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia-ischemia in the newborn ratNeurobiol. Dis. 21, 119–126. doi: 10.1016/j.nbd.2005.06.014, PMID: [PubMed] [CrossRef[]
  • Carloni S., Perrone S., Buonocore G., Longini M., Proietti F., Balduini W. (2008). Melatonin protects from the long-term consequences of a neonatal hypoxic-ischemic brain injury in ratsJ. Pineal Res. 44, 157–164. doi: 10.1111/j.1600-079X.2007.00503.x, PMID: [PubMed] [CrossRef[]
  • Carrier E. J., Auchampach J. A., Hillard C. J. (2006). Inhibition of an equilibrative nucleoside transporter by cannabidiol: A mechanism of cannabinoid immunosuppressionProc. Natl. Acad. Sci. U. S. A. 103, 7895–7900. doi: 10.1073/pnas.0511232103 [PMC free article] [PubMed] [CrossRef[]
  • Castillo A., Tolon M. R., Fernandez-Ruiz J., Romero J., Martinez-Orgado J. (2010). The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB (Zybura et al.) and adenosine receptorsNeurobiol. Dis. 37, 434–440. doi: 10.1016/j.nbd.2009.10.023, PMID: [PubMed] [CrossRef[]
  • Chang Y. H., Lee S. T., Lin W. W. (2001). Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoidsJ. Cell. Biochem. 81, 715–723. doi: 10.1002/jcb.1103 [PubMed] [CrossRef[]
  • Chang Y. S., Mu D., Wendland M., Sheldon R. A., Vexler Z. S., Mcquillen P. S., et al.. (2005). Erythropoietin improves functional and histological outcome in neonatal strokePediatr. Res. 58, 106–111. doi: 10.1203/01.PDR.0000163616.89767.69, PMID: [PubMed] [CrossRef[]
  • Chi O. Z., Barsoum S., Grayson J., Hunter C., Liu X., Weiss H. R. (2012). Effects of cannabinoid receptor agonist WIN 55,212-2 on blood-brain barrier disruption in focal cerebral ischemia in ratsPharmacology 89, 333–338. doi: 10.1159/000338755 [PubMed] [CrossRef[]
  • Chiurchiu V., van der Stelt M., Centonze D., Maccarrone M. (2018). The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: Clues for other neuroinflammatory diseasesProg. Neurobiol. 160, 82–100. doi: 10.1016/j.pneurobio.2017.10.007 [PubMed] [CrossRef[]
  • Chung Y. C., Shin W. H., Baek J. Y., Cho E. J., Baik H. H., Kim S. R., et al.. (2016). CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s diseaseExp. Mol. Med. 48:e205. doi: 10.1038/emm.2015.100, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Cristino L., Bisogno T., Di Marzo V. (2019). Cannabinoids and the expanded endocannabinoid system in neurological disordersNat. Rev. Neurol. 16, 9–29. doi: 10.1038/s41582-019-0284-z [PubMed] [CrossRef[]
  • Dai Y., Li W., Zhong M., Chen J., Liu Y., Cheng Q., et al.. (2014). Preconditioning and post-treatment with cobalt chloride in rat model of perinatal hypoxic-ischemic encephalopathyBrain Dev. 36, 228–240. doi: 10.1016/j.braindev.2013.04.007, PMID: [PubMed] [CrossRef[]
  • De Lago E., Fernández-Ruiz J. (2007). Cannabinoids and neuroprotection in motor-related disordersCNS Neurol. Disord. Drug Targets 6, 377–387. doi: 10.2174/187152707783399210 [PubMed] [CrossRef[]
  • De Salas-Quiroga A., Diaz-Alonso J., Garcia-Rincon D., Remmers F., Vega D., Gomez-Canas M., et al.. (2015). Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neuronsProc. Natl. Acad. Sci. U. S. A. 112, 13693–13698. doi: 10.1073/pnas.1514962112, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Devane W. A., Dysarz F. A., 3rd, Johnson M. R., Melvin L. S., Howlett A. C. (1988). Determination and characterization of a cannabinoid receptor in rat brainMol. Pharmacol. 34, 605–613. [PubMed[]
  • Devane W. A., Hanus L., Breuer A., Pertwee R. G., Stevenson L. A., Griffin G., et al.. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptorScience 258, 1946–1949. doi: 10.1126/science.1470919, PMID: [PubMed] [CrossRef[]
  • Devinsky O., Cross J. H., Laux L., Marsh E., Miller I., Nabbout R., et al.. (2017). Trial of Cannabidiol for drug-resistant seizures in the Dravet syndromeN. Engl. J. Med. 376, 2011–2020. doi: 10.1056/NEJMoa1611618 [PubMed] [CrossRef[]
  • Devinsky O., Marsh E., Friedman D., Thiele E., Laux L., Sullivan J., et al.. (2016). Cannabidiol in patients with treatment-resistant epilepsy: An open-label interventional trialLancet Neurol. 15, 270–278. doi: 10.1016/S1474-4422(15)00379-8, PMID: [PubMed] [CrossRef[]
  • Diaz-Alonso J., Aguado T., De Salas-Quiroga A., Ortega Z., Guzman M., Galve-Roperh I. (2015). CB1 cannabinoid receptor-dependent activation of mTORC1/Pax6 signaling drives Tbr2 expression and basal progenitor expansion in the developing mouse cortexCereb. Cortex 25, 2395–2408. doi: 10.1093/cercor/bhu039 [PubMed] [CrossRef[]
  • Docagne F., Muneton V., Clemente D., Ali C., Loria F., Correa F., et al.. (2007). Excitotoxicity in a chronic model of multiple sclerosis: Neuroprotective effects of cannabinoids through CB1 and CB2 receptor activationMol. Cell. Neurosci. 34, 551–561. doi: 10.1016/j.mcn.2006.12.005, PMID: [PubMed] [CrossRef[]
  • Du Plessis A. J., Volpe J. J. (2002). Perinatal brain injury in the preterm and term newbornCurr. Opin. Neurol. 15, 151–157. doi: 10.1097/00019052-200204000-00005 [PubMed] [CrossRef[]
  • Ellgren M., Artmann A., Tkalych O., Gupta A., Hansen H. S., Hansen S. H., et al.. (2008). Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effectsEur. Neuropsychopharmacol. 18, 826–834. doi: 10.1016/j.euroneuro.2008.06.009, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Esteve J. M., Mompo J., Garcia De La Asuncion J., Sastre J., Asensi M., Boix J., et al.. (1999). Oxidative damage to mitochondrial DNA and glutathione oxidation in apoptosis: Studies in vivo and in vitroFASEB J. 13, 1055–1064. doi: 10.1096/fasebj.13.9.1055, PMID: [PubMed] [CrossRef[]
  • Fernández-López D., Pazos M. R., Tolón R. M., Moro M. A., Romero J., Lizasoain I., et al.. (2007). The cannabinoid agonist WIN55212 reduces brain damage in an in vivo model of hypoxic-ischemic encephalopathy in newborn ratsPediatr. Res. 62, 255–260. doi: 10.1203/PDR.0b013e318123fbb8 [PubMed] [CrossRef[]
  • Fernandez-Lopez D., Pradillo J. M., Garcia-Yebenes I., Martinez-Orgado J. A., Moro M. A., Lizasoain I. (2010). The cannabinoid WIN55212-2 promotes neural repair after neonatal hypoxia-ischemiaStroke 41, 2956–2964. doi: 10.1161/STROKEAHA.110.599357 [PubMed] [CrossRef[]
  • Fernandez-Ruiz J., Pazos M. R., Garcia-Arencibia M., Sagredo O., Ramos J. A. (2008). Role of CB2 receptors in neuroprotective effects of cannabinoidsMol. Cell. Endocrinol. 286, S91–S96. doi: 10.1016/j.mce.2008.01.001 [PubMed] [CrossRef[]
  • Fernandez-Ruiz J., Romero J., Velasco G., Tolon R. M., Ramos J. A., Guzman M. (2007). Cannabinoid CB2 receptor: A new target for controlling neural cell survival? Trends Pharmacol. Sci. 28, 39–45. doi: 10.1016/j.tips.2006.11.001 [PubMed] [CrossRef[]
  • Ferriero D. M. (2004). Neonatal brain injuryN. Engl. J. Med. 351, 1985–1995. doi: 10.1056/NEJMra041996 [PubMed] [CrossRef[]
  • Franklin A., Parmentier-Batteur S., Walter L., Greenberg D. A., Stella N. (2003). Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motilityJ. Neurosci. 23, 7767–7775. doi: 10.1523/JNEUROSCI.23-21-07767.2003, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Freund T. F., Katona I., Piomelli D. (2003). Role of endogenous cannabinoids in synaptic signalingPhysiol. Rev. 83, 1017–1066. doi: 10.1152/physrev.00004.2003 [PubMed] [CrossRef[]
  • Galiègue S., Mary S., Marchand J., Dussossoy D., Carrière D., Carayon P., et al.. (1995). Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulationsEur. J. Biochem. 232, 54–61. doi: 10.1111/j.1432-1033.1995.tb20780.x, PMID: [PubMed] [CrossRef[]
  • Galve-Roperh I., Chiurchiu V., Diaz-Alonso J., Bari M., Guzman M., Maccarrone M. (2013). Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiationProg. Lipid Res. 52, 633–650. doi: 10.1016/j.plipres.2013.05.004, PMID: [PubMed] [CrossRef[]
  • Gao Y., Vasilyev D. V., Goncalves M. B., Howell F. V., Hobbs C., Reisenberg M., et al.. (2010). Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out miceJ. Neurosci. 30, 2017–2024. doi: 10.1523/JNEUROSCI.5693-09.2010 [PMC free article] [PubMed] [CrossRef[]
  • Golech S. A., Mccarron R. M., Chen Y., Bembry J., Lenz F., Mechoulam R., et al.. (2004). Human brain endothelium: Coexpression and function of vanilloid and endocannabinoid receptorsBrain Res. Mol. Brain Res. 132, 87–92. doi: 10.1016/j.molbrainres.2004.08.025, PMID: [PubMed] [CrossRef[]
  • Goncalves M. B., Suetterlin P., Yip P., Molina-Holgado F., Walker D. J., Oudin M. J., et al.. (2008). A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent mannerMol. Cell. Neurosci. 38, 526–536. doi: 10.1016/j.mcn.2008.05.001 [PubMed] [CrossRef[]
  • Gonzalez F. F., Mcquillen P., Mu D., Chang Y., Wendland M., Vexler Z., et al.. (2007). Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal strokeDev. Neurosci. 29, 321–330. doi: 10.1159/000105473 [PubMed] [CrossRef[]
  • Gupta B., Hornick M. G., Briyal S., Donovan R., Prazad P., Gulati A. (2020). Anti-apoptotic and Immunomodulatory effect of CB2 agonist, JWH133, in a neonatal rat model of hypoxic-ischemic encephalopathyFront. Pediatr. 8:65. doi: 10.3389/fped.2020.00065 [PMC free article] [PubMed] [CrossRef[]
  • Hampson A. J., Grimaldi M., Lolic M., Wink D., Rosenthal R., Axelrod J. (2000). Neuroprotective antioxidants from marijuanaAnn. N. Y. Acad. Sci. 899, 274–282. [PubMed[]
  • Harkany T., Guzman M., Galve-Roperh I., Berghuis P., Devi L. A., Mackie K. (2007). The emerging functions of endocannabinoid signaling during CNS developmentTrends Pharmacol. Sci. 28, 83–92. doi: 10.1016/j.tips.2006.12.004, PMID: [PubMed] [CrossRef[]
  • Hashimoto T., Yonetani M., Nakamura H. (2003). Selective brain hypothermia protects against hypoxic-ischemic injury in newborn rats by reducing hydroxyl radical productionKobe J. Med. Sci. 49, 83–91. [PubMed[]
  • Hebert-Chatelain E., Desprez T., Serrat R., Bellocchio L., Soria-Gomez E., Busquets-Garcia A., et al.. (2016). A cannabinoid link between mitochondria and memoryNature 539, 555–559. doi: 10.1038/nature20127 [PubMed] [CrossRef[]
  • Hu S. S., Mackie K. (2015). Distribution of the Endocannabinoid system in the central nervous systemHandb. Exp. Pharmacol. 231, 59–93. doi: 10.1007/978-3-319-20825-1_3 [PubMed] [CrossRef[]
  • Izzo A. A., Borrelli F., Capasso R., Di Marzo V., Mechoulam R. (2009). Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herbTrends Pharmacol. Sci. 30, 515–527. doi: 10.1016/j.tips.2009.07.006 [PubMed] [CrossRef[]
  • Jantzie L. L., Cheung P. Y., Todd K. G. (2005). Doxycycline reduces cleaved caspase-3 and microglial activation in an animal model of neonatal hypoxia-ischemiaJ. Cereb. Blood Flow Metab. 25, 314–324. doi: 10.1038/sj.jcbfm.9600025, PMID: [PubMed] [CrossRef[]
  • Jatana M., Singh I., Singh A. K., Jenkins D. (2006). Combination of systemic hypothermia and N-acetylcysteine attenuates hypoxic-ischemic brain injury in neonatal ratsPediatr. Res. 59, 684–689. doi: 10.1203/01.pdr.0000215045.91122.44, PMID: [PubMed] [CrossRef[]
  • Juan-Pico P., Fuentes E., Bermudez-Silva F. J., Javier Diaz-Molina F., Ripoll C., Rodriguez De Fonseca F., et al.. (2006). Cannabinoid receptors regulate ca(2+) signals and insulin secretion in pancreatic beta-cellCell Calcium 39, 155–162. doi: 10.1016/j.ceca.2005.10.005, PMID: [PubMed] [CrossRef[]
  • Julien B., Grenard P., Teixeira-Clerc F., Van Nhieu J. T., Li L., Karsak M., et al.. (2005). Antifibrogenic role of the cannabinoid receptor CB2 in the liverGastroenterology 128, 742–755. doi: 10.1053/j.gastro.2004.12.050 [PubMed] [CrossRef[]
  • Jutras-Aswad D., Dinieri J. A., Harkany T., Hurd Y. L. (2009). Neurobiological consequences of maternal cannabis on human fetal development and its neuropsychiatric outcomeEur. Arch. Psychiatry Clin. Neurosci. 259, 395–412. doi: 10.1007/s00406-009-0027-z [PubMed] [CrossRef[]
  • Juul S. E., Ferriero D. M. (2014). Pharmacologic neuroprotective strategies in neonatal brain injuryClin. Perinatol. 41, 119–131. doi: 10.1016/j.clp.2013.09.004 [PMC free article] [PubMed] [CrossRef[]
  • Kaczocha M., Glaser S. T., Chae J., Brown D. A., Deutsch D. G. (2010). Lipid droplets are novel sites of N-acylethanolamine inactivation by fatty acid amide hydrolase-2J. Biol. Chem. 285, 2796–2806. doi: 10.1074/jbc.M109.058461 [PMC free article] [PubMed] [CrossRef[]
  • Katona I., Freund T. F. (2012). Multiple functions of endocannabinoid signaling in the brainAnnu. Rev. Neurosci. 35, 529–558. doi: 10.1146/annurev-neuro-062111-150420 [PMC free article] [PubMed] [CrossRef[]
  • Keimpema E., Calvigioni D., Harkany T. (2013). Endocannabinoid signals in the developmental programming of delayed-onset neuropsychiatric and metabolic illnessesBiochem. Soc. Trans. 41, 1569–1576. doi: 10.1042/BST20130117, PMID: [PubMed] [CrossRef[]
  • Kerai A., Sim T. F., Emmerton L. (2018). Medical cannabis: A needs analysis for people with epilepsyComplement. Ther. Clin. Pract. 33, 43–48. doi: 10.1016/j.ctcp.2018.08.003, PMID: [PubMed] [CrossRef[]
  • Klein T. W. (2005). Cannabinoid-based drugs as anti-inflammatory therapeuticsNat. Rev. Immunol. 5, 400–411. doi: 10.1038/nri1602 [PubMed] [CrossRef[]
  • Lafuente H., Pazos M. R., Alvarez A., Mohammed N., Santos M., Arizti M., et al.. (2016). Effects of Cannabidiol and hypothermia on short-term brain damage in new-born piglets after acute hypoxia-ischemiaFront. Neurosci. 10:323. doi: 10.3389/fnins.2016.00323 [PMC free article] [PubMed] [CrossRef[]
  • Lee T. T., Hill M. N., Hillard C. J., Gorzalka B. B. (2013). Temporal changes in N-acylethanolamine content and metabolism throughout the peri-adolescent periodSynapse 67, 4–10. doi: 10.1002/syn.21609, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Lee T. F., Jantzie L. L., Todd K. G., Cheung P. Y. (2008). Postresuscitation N-acetylcysteine treatment reduces cerebral hydrogen peroxide in the hypoxic piglet brainIntensive Care Med. 34, 190–197. doi: 10.1007/s00134-007-0880-z, PMID: [PubMed] [CrossRef[]
  • Leker R. R., Gai N., Mechoulam R., Ovadia H. (2003). Drug-induced hypothermia reduces ischemic damage: Effects of the cannabinoid HU-210Stroke 34, 2000–2006. doi: 10.1161/01.STR.0000079817.68944.1E [PubMed] [CrossRef[]
  • Lovinger D. M. (2008). Presynaptic modulation by endocannabinoidsHandb. Exp. Pharmacol. 184, 435–477. doi: 10.1007/978-3-540-74805-2_14 [PubMed] [CrossRef[]
  • Lucas C. J., Galettis P., Schneider J. (2018). The pharmacokinetics and the pharmacodynamics of cannabinoidsBr. J. Clin. Pharmacol. 84, 2477–2482. doi: 10.1111/bcp.13710, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Lynn A. B., Herkenham M. (1994). Localization of cannabinoid receptors and nonsaturable high-density cannabinoid binding sites in peripheral tissues of the rat: Implications for receptor-mediated immune modulation by cannabinoidsJ. Pharmacol. Exp. Ther. 268, 1612–1623. [PubMed[]
  • Maccarrone M., Guzman M., Mackie K., Doherty P., Harkany T. (2014). Programming of neural cells by (endo)cannabinoids: From physiological rules to emerging therapiesNat. Rev. Neurosci. 15, 786–801. doi: 10.1038/nrn3846, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Mackie K. (2005). Distribution of cannabinoid receptors in the central and peripheral nervous systemHandb. Exp. Pharmacol. 168, 299–325. doi: 10.1007/3-540-26573-2_10 [PubMed] [CrossRef[]
  • Marchalant Y., Brothers H. M., Norman G. J., Karelina K., Devries A. C., Wenk G. L. (2009). Cannabinoids attenuate the effects of aging upon neuroinflammation and neurogenesisNeurobiol. Dis. 34, 300–307. doi: 10.1016/j.nbd.2009.01.014 [PubMed] [CrossRef[]
  • Maresz K., Carrier E. J., Ponomarev E. D., Hillard C. J., Dittel B. N. (2005). Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuliJ. Neurochem. 95, 437–445. doi: 10.1111/j.1471-4159.2005.03380.x [PubMed] [CrossRef[]
  • Maresz K., Pryce G., Ponomarev E. D., Marsicano G., Croxford J. L., Shriver L. P., et al.. (2007). Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cellsNat. Med. 13, 492–497. doi: 10.1038/nm1561 [PubMed] [CrossRef[]
  • Marinelli S., Marrone M. C., Di Domenico M., Marinelli S. (2023). Endocannabinoid signaling in microgliaGlia 71, 71–90. doi: 10.1002/glia.24281, PMID: [PubMed] [CrossRef[]
  • Marsicano G., Goodenough S., Monory K., Hermann H., Eder M., Cannich A., et al.. (2003). CB1 cannabinoid receptors and on-demand defense against excitotoxicityScience 302, 84–88. doi: 10.1126/science.1088208, PMID: [PubMed] [CrossRef[]
  • Marsicano G., Lutz B. (1999). Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrainEur. J. Neurosci. 11, 4213–4225. doi: 10.1046/j.1460-9568.1999.00847.x, PMID: [PubMed] [CrossRef[]
  • Marsicano G., Moosmann B., Hermann H., Lutz B., Behl C. (2002). Neuroprotective properties of cannabinoids against oxidative stress: Role of the cannabinoid receptor CB1J. Neurochem. 80, 448–456. doi: 10.1046/j.0022-3042.2001.00716.x [PubMed] [CrossRef[]
  • Mato S., Del Olmo E., Pazos A. (2003). Ontogenetic development of cannabinoid receptor expression and signal transduction functionality in the human brainEur. J. Neurosci. 17, 1747–1754. doi: 10.1046/j.1460-9568.2003.02599.x, PMID: [PubMed] [CrossRef[]
  • Mauler F., Horváth E., De Vry J., Jäger R., Schwarz T., Sandmann S., et al.. (2003). BAY 38-7271: A novel highly selective and highly potent cannabinoid receptor agonist for the treatment of traumatic brain injuryCNS Drug Rev. 9, 343–358. doi: 10.1111/j.1527-3458.2003.tb00259.x [PMC free article] [PubMed] [CrossRef[]
  • Meyer H. C., Lee F. S., Gee D. G. (2018). The role of the Endocannabinoid system and genetic variation in adolescent brain developmentNeuropsychopharmacology 43, 21–33. doi: 10.1038/npp.2017.143, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Montecucco F., Lenglet S., Braunersreuther V., Burger F., Pelli G., Bertolotto M., et al.. (2009). CB (Zybura et al.) cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusionJ. Mol. Cell. Cardiol. 46, 612–620. doi: 10.1016/j.yjmcc.2008.12.014, PMID: [PubMed] [CrossRef[]
  • Mulder J., Aguado T., Keimpema E., Barabás K., Ballester Rosado C. J., Nguyen L., et al.. (2008). Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterningProc. Natl. Acad. Sci. U. S. A. 105, 8760–8765. doi: 10.1073/pnas.0803545105, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Munro S., Thomas K. L., Abu-Shaar M. (1993). Molecular characterization of a peripheral receptor for cannabinoidsNature 365, 61–65. doi: 10.1038/365061a0 [PubMed] [CrossRef[]
  • Muthian S., Rademacher D. J., Roelke C. T., Gross G. J., Hillard C. J. (2004). Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemiaNeuroscience 129, 743–750. doi: 10.1016/j.neuroscience.2004.08.044, PMID: [PubMed] [CrossRef[]
  • Natarajan G., Pappas A., Shankaran S. (2016). Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE)Semin. Perinatol. 40, 549–555. doi: 10.1053/j.semperi.2016.09.007 [PMC free article] [PubMed] [CrossRef[]
  • Navarrete F., Rodriguez-Arias M., Martin-Garcia E., Navarro D., Garcia-Gutierrez M. S., Aguilar M. A., et al.. (2013). Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotineNeuropsychopharmacology 38, 2515–2524. doi: 10.1038/npp.2013.157 [PMC free article] [PubMed] [CrossRef[]
  • Ni X., Geller E. B., Eppihimer M. J., Eisenstein T. K., Adler M. W., Tuma R. F. (2004). Win 55212-2, a cannabinoid receptor agonist, attenuates leukocyte/endothelial interactions in an experimental autoimmune encephalomyelitis modelMult. Scler. 10, 158–164. doi: 10.1191/1352458504ms1009oa, PMID: [PubMed] [CrossRef[]
  • Nicolussi S., Gertsch J. (2015). Endocannabinoid transport revisitedVitam. Horm. 98, 441–485. doi: 10.1016/bs.vh.2014.12.011, PMID: [PubMed] [CrossRef[]
  • Oddi S., Fezza F., Pasquariello N., De Simone C., Rapino C., Dainese E., et al.. (2008). Evidence for the intracellular accumulation of anandamide in adiposomesCell. Mol. Life Sci. 65, 840–850. doi: 10.1007/s00018-008-7494-7, PMID: [PubMed] [CrossRef[]
  • Ofek O., Karsak M., Leclerc N., Fogel M., Frenkel B., Wright K., et al.. (2006). Peripheral cannabinoid receptor, CB2, regulates bone massProc. Natl. Acad. Sci. U. S. A. 103, 696–701. doi: 10.1073/pnas.0504187103, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Oudin M. J., Gajendra S., Williams G., Hobbs C., Lalli G., Doherty P. (2011). Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brainJ. Neurosci. 31, 4000–4011. doi: 10.1523/JNEUROSCI.5483-10.2011 [PMC free article] [PubMed] [CrossRef[]
  • Pacher P., Bátkai S., Kunos G. (2006). The endocannabinoid system as an emerging target of pharmacotherapyPharmacol. Rev. 58, 389–462. doi: 10.1124/pr.58.3.2, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Palazuelos J., Ortega Z., Diaz-Alonso J., Guzman M., Galve-Roperh I. (2012). CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signalingJ. Biol. Chem. 287, 1198–1209. doi: 10.1074/jbc.M111.291294, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Palmer C., Towfighi J., Roberts R. L., Heitjan D. F. (1993). Allopurinol administered after inducing hypoxia-ischemia reduces brain injury in 7-day-old ratsPediatr. Res. 33, 405–411. doi: 10.1203/00006450-199304000-00018 [PubMed] [CrossRef[]
  • Parmentier-Batteur S., Jin K., Mao X. O., Xie L., Greenberg D. A. (2002). Increased severity of stroke in CB1 cannabinoid receptor knock-out miceJ. Neurosci. 22, 9771–9775. doi: 10.1523/JNEUROSCI.22-22-09771.2002, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Pazos M. R., Mohammed N., Lafuente H., Santos M., Martinez-Pinilla E., Moreno E., et al.. (2013). Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: Role of 5HT(1A) and CB2 receptorsNeuropharmacology 71, 282–291. doi: 10.1016/j.neuropharm.2013.03.027 [PubMed] [CrossRef[]
  • Pellegrini-Giampietro D. E., Mannaioni G., Bagetta G. (2009). Post-ischemic brain damage: The endocannabinoid system in the mechanisms of neuronal deathFEBS J. 276, 2–12. doi: 10.1111/j.1742-4658.2008.06765.x [PubMed] [CrossRef[]
  • Pertwee R. G., Nash K., Trayhurn P. (1991). Evidence that the hypothermic response of mice to delta-9-tetrahydrocannabinol is not mediated by changes in thermogenesis in brown adipose tissueCan. J. Physiol. Pharmacol. 69, 767–770. doi: 10.1139/y91-114 [PubMed] [CrossRef[]
  • Prenderville J. A., Kelly A. M., Downer E. J. (2015). The role of cannabinoids in adult neurogenesisBr. J. Pharmacol. 172, 3950–3963. doi: 10.1111/bph.13186, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Rajesh M., Mukhopadhyay P., Bátkai S., Haskó G., Liaudet L., Huffman J. W., et al.. (2007). CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesionAm. J. Physiol. Heart Circ. Physiol. 293, H2210–H2218. doi: 10.1152/ajpheart.00688.2007 [PMC free article] [PubMed] [CrossRef[]
  • Ramirez B. G., Blazquez C., Gomez Del Pulgar T., Guzman M., De Ceballos M. L. (2005). Prevention of Alzheimer’s disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activationJ. Neurosci. 25, 1904–1913. doi: 10.1523/JNEUROSCI.4540-04.2005 [PMC free article] [PubMed] [CrossRef[]
  • Rivers J. R., Ashton J. C. (2010). The development of cannabinoid CBII receptor agonists for the treatment of central neuropathiesCent. Nerv. Syst. Agents Med. Chem. 10, 47–64. doi: 10.2174/187152410790780145 [PubMed] [CrossRef[]
  • Rivers-Auty J. R., Smith P. F., Ashton J. C. (2014). The cannabinoid CB2 receptor agonist GW405833 does not ameliorate brain damage induced by hypoxia-ischemia in ratsNeurosci. Lett. 569, 104–109. doi: 10.1016/j.neulet.2014.03.077 [PubMed] [CrossRef[]
  • Robin L. M., Oliveira Da Cruz J. F., Langlais V. C., Martin-Fernandez M., Metna-Laurent M., Busquets-Garcia A., et al.. (2018). Astroglial CB(1) receptors determine synaptic D-serine availability to enable recognition memoryNeuron 98, 935–944.e5. doi: 10.1016/j.neuron.2018.04.034 [PubMed] [CrossRef[]
  • Rock E. M., Bolognini D., Limebeer C. L., Cascio M. G., Anavi-Goffer S., Fletcher P. J., et al.. (2012). Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT(1A) somatodendritic autoreceptors in the dorsal raphe nucleusBr. J. Pharmacol. 165, 2620–2634. doi: 10.1111/j.1476-5381.2011.01621.x [PMC free article] [PubMed] [CrossRef[]
  • Sanders R. D., Manning H. J., Robertson N. J., Ma D., Edwards A. D., Hagberg H., et al.. (2010). Preconditioning and postinsult therapies for perinatal hypoxic-ischemic injury at termAnesthesiology 113, 233–249. doi: 10.1097/ALN.0b013e3181dc1b84, PMID: [PubMed] [CrossRef[]
  • Shalak L. F., Laptook A. R., Velaphi S. C., Perlman J. M. (2003). Amplitude-integrated electroencephalography coupled with an early neurologic examination enhances prediction of term infants at risk for persistent encephalopathyPediatrics 111, 351–357. doi: 10.1542/peds.111.2.351 [PubMed] [CrossRef[]
  • Signorini C., Ciccoli L., Leoncini S., Carloni S., Perrone S., Comporti M., et al.. (2009). Free iron, total F-isoprostanes and total F-neuroprostanes in a model of neonatal hypoxic-ischemic encephalopathy: Neuroprotective effect of melatoninJ. Pineal Res. 46, 148–154. doi: 10.1111/j.1600-079X.2008.00639 [PubMed] [CrossRef[]
  • Sinor A. D., Irvin S. M., Greenberg D. A. (2000). Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in ratsNeurosci. Lett. 278, 157–160. doi: 10.1016/s0304-3940(99)00922-2 [PubMed] [CrossRef[]
  • Soethoudt M., Grether U., Fingerle J., Grim T. W., Fezza F., De Petrocellis L., et al.. (2017). Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activityNat. Commun. 8:13958. doi: 10.1038/ncomms13958 [PMC free article] [PubMed] [CrossRef[]
  • Sola A., Wen T. C., Hamrick S. E., Ferriero D. M. (2005). Potential for protection and repair following injury to the developing brain: a role for erythropoietin? Pediatr. Res. 57, 110R–117R. doi: 10.1203/01.PDR.0000159571.50758.39 [PubMed] [CrossRef[]
  • Solbrig M. V., Fan Y., Hermanowicz N., Morgese M. G., Giuffrida A. (2010). A synthetic cannabinoid agonist promotes oligodendrogliogenesis during viral encephalitis in ratsExp. Neurol. 226, 231–241. doi: 10.1016/j.expneurol.2010.09.003 [PMC free article] [PubMed] [CrossRef[]
  • Stella N. (2004). Cannabinoid signaling in glial cellsGlia 48, 267–277. doi: 10.1002/glia.20084 [PubMed] [CrossRef[]
  • Stempel A. V., Stumpf A., Zhang H. Y., Ozdogan T., Pannasch U., Theis A. K., et al.. (2016). Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampusNeuron 90, 795–809. doi: 10.1016/j.neuron.2016.03.034, PMID: [PMC free article] [PubMed] [CrossRef[]
  • Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., Itoh K., et al.. (1995). 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brainBiochem. Biophys. Res. Commun. 215, 89–97. doi: 10.1006/bbrc.1995.2437 [PubMed] [CrossRef[]
  • Sugiura T., Waku K. (2002). Cannabinoid receptors and their endogenous ligandsJ. Biochem. 132, 7–12. doi: 10.1093/oxfordjournals.jbchem.a003200 [PubMed] [CrossRef[]
  • Torfs C. P., Van Den Berg B., Oechsli F. W., Cummins S. (1990). Prenatal and perinatal factors in the etiology of cerebral palsyJ. Pediatr. 116, 615–619. doi: 10.1016/S0022-3476(05)81615-4 [PubMed] [CrossRef[]
  • Turcotte C., Blanchet M. R., Laviolette M., Flamand N. (2016). The CB2 receptor and its role as a regulator of inflammationCell. Mol. Life Sci. 73, 4449–4470. doi: 10.1007/s00018-016-2300-4 [PMC free article] [PubMed] [CrossRef[]
  • Van Bel F., Shadid M., Moison R. M., Dorrepaal C. A., Fontijn J., Monteiro L., et al.. (1998). Effect of allopurinol on postasphyxial free radical formation, cerebral hemodynamics, and electrical brain activityPediatrics 101, 185–193. doi: 10.1542/peds.101.2.185, PMID: [PubMed] [CrossRef[]
  • Viscomi M. T., Oddi S., Latini L., Pasquariello N., Florenzano F., Bernardi G., et al.. (2009). Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathwayJ. Neurosci. 29, 4564–4570. doi: 10.1523/JNEUROSCI.0786-09.2009 [PMC free article] [PubMed] [CrossRef[]
  • Wang X., Dow-Edwards D., Keller E., Hurd Y. L. (2003). Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brainNeuroscience 118, 681–694. doi: 10.1016/S0306-4522(03)00020-4, PMID: [PubMed] [CrossRef[]
  • Whitney N. P., Eidem T. M., Peng H., Huang Y., Zheng J. C. (2009). Inflammation mediates varying effects in neurogenesis: Relevance to the pathogenesis of brain injury and neurodegenerative disordersJ. Neurochem. 108, 1343–1359. doi: 10.1111/j.1471-4159.2009.05886.x [PMC free article] [PubMed] [CrossRef[]
  • Wu J., Hocevar M., Foss J. F., Bie B., Naguib M. (2017). Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer’s diseaseEur. J. Pharmacol. 811, 12–20. doi: 10.1016/j.ejphar.2017.05.044, PMID: [PubMed] [CrossRef[]
  • Wyatt J. S., Gluckman P. D., Liu P. Y., Azzopardi D., Ballard R., Edwards A. D., et al.. (2007). Determinants of outcomes after head cooling for neonatal encephalopathyPediatrics 119, 912–921. doi: 10.1542/peds.2006-2839, PMID: [PubMed] [CrossRef[]
  • Xapelli S., Agasse F., Grade S., Bernardino L., Ribeiro F. F., Schitine C. S., et al.. (2014). Modulation of subventricular zone oligodendrogenesis: A role for hemopressin? Front. Cell. Neurosci. 8:59. doi: 10.3389/fncel.2014.00059 [PMC free article] [PubMed] [CrossRef[]
  • Xapelli S., Agasse F., Sarda-Arroyo L., Bernardino L., Santos T., Ribeiro F. F., et al.. (2013). Activation of type 1 cannabinoid receptor (CB1R) promotes neurogenesis in murine subventricular zone cell culturesPLoS One 8:e63529. doi: 10.1371/journal.pone.0063529 [PMC free article] [PubMed] [CrossRef[]
  • Yates M. L., Barker E. L. (2009). Organized trafficking of anandamide and related lipidsVitam. Horm. 81, 25–53. doi: 10.1016/S0083-6729(09)81002-9 [PubMed] [CrossRef[]
  • Zarruk J. G., Fernandez-Lopez D., Garcia-Yebenes I., Garcia-Gutierrez M. S., Vivancos J., Nombela F., et al.. (2012). Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotectionStroke 43, 211–219. doi: 10.1161/STROKEAHA.111.631044 [PubMed] [CrossRef[]
  • Zhang M., Martin B. R., Adler M. W., Razdan R. K., Jallo J. I., Tuma R. F. (2007). Cannabinoid CB(2) receptor activation decreases cerebral infarction in a mouse focal ischemia/reperfusion modelJ. Cereb. Blood Flow Metab. 27, 1387–1396. doi: 10.1038/sj.jcbfm.9600447 [PMC free article] [PubMed] [CrossRef[]
  • Zhang M., Martin B. R., Adler M. W., Razdan R. J., Kong W., Ganea D., et al.. (2009). Modulation of cannabinoid receptor activation as a neuroprotective strategy for EAE and strokeJ. Neuroimmune Pharmacol. 4, 249–259. doi: 10.1007/s11481-009-9148-4 [PMC free article] [PubMed] [CrossRef[]
  • Zhou Y., Sun L., Wang H. (2023). Ketogenic diet for neonatal hypoxic-ischemic encephalopathyACS Chem. Neurosci. 14, 1–8. doi: 10.1021/acschemneuro.2c00609, PMID: [PubMed] [CrossRef[]
  • Zhu C., Wang X., Cheng X., Qiu L., Xu F., Simbruner G., et al.. (2004). Post-ischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia-ischemiaBrain Res. 996, 67–75. doi: 10.1016/j.brainres.2003.10.013, PMID: [PubMed] [CrossRef[]
  • Zurolo E., Iyer A. M., Spliet W. G., Van Rijen P. C., Troost D., Gorter J. A., et al.. (2010). CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologiesNeuroscience 170, 28–41. doi: 10.1016/j.neuroscience.2010.07.004, PMID: [PubMed] [CrossRef[]

Articles from Frontiers in Molecular Neuroscience are provided here courtesy of Frontiers Media SA


Leave a Reply