Canna~Fangled Abstracts

The GPR55 antagonist CID16020046 protects against ox-LDL-induced inflammation in human aortic endothelial cells (HAECs).

By January 3, 2020January 8th, 2020No Comments
2020 Jan 3:108254. doi: 10.1016/j.abb.2020.108254.
[Epub ahead of print]

Abstract

Atherosclerosis is a commonplace cardiovascular disease which affects most people in old age. While its causes are currently poorly understood, continuous study is being performed in order to elucidate both the pathogenesis and treatment of this insidious disease. Atherosclerosis is presently thought to be linked to several factors such as endothelial dysfunction, monocyte adhesion to the intima of the artery, and increased oxidative stress. Oxidized low-density lipoprotein (ox-LDL), colloquially known as the “bad cholesterol”, is known to play a critical role in the previously mentioned atherosclerotic processes. In this study, our goal was to elucidate the role of the lysophospholipid receptor G protein-coupled receptor 55 (GPR55) and its antagonist, the cannabinoid CID16020046, in endothelial dysfunction. While their existence and especially their role in atherosclerosis has only semi-recently been elucidated, a growing body of research has begun to link their interaction to antiatherosclerosis. In our research, we found CID16020046 to have distinct atheroprotective properties such as anti-inflammation, antioxidant, and inhibition of monocyte attachment to endothelial cells. While there was previously a small body of research regarding the potential of cannabinoids to treat or prevent atherosclerosis, studies on the treatment potential of CID16020046 were even fewer. Thus, this study is one of the first to explore the effects of cannabinoids in atherosclerosis. Our findings in the present study provide a strong argument for the use of CID16020046 in the treatment of atherosclerosis as well as a basis for further experimentation using cannabinoids as therapy against atherosclerosis.

KEYWORDS: Atherosclerosis, Endothelial dysfunction, GPR55, KLF2, Oxidative stress, ox-LDL

Leave a Reply